当前位置: 首页 > article >正文

本质矩阵分解计算Rt

1 本质矩阵的计算

        上一文章中描述了本质矩阵的计算,计算机视觉-对极几何-CSDN博客,那么计算得到本质矩阵有什么用?其中一个应用是通过本质矩阵计算得到2D-2D的相对变换。

        在相关矩阵计算时,一般会在两幅图像中,根据特征找到对应匹配对后估计出基础矩阵F或本质矩阵E,如果是直接估计出基础矩阵F,且知道两幅图中的相机参数分别为K1、K2,则可以直接得到本质矩阵E

E=K_2^T F K_1

对于本质矩阵与相对变换的R和t有如下关系(注意这里指的相对变换是从第一幅图变换到第二幅图的位姿相对变换)

E=t_{\times} R

集体的求解方法参考4中参考文献。

3 R t 的恢复

使用opencv api :

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t,
                 InputOutputArray mask = noArray() );
int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 OutputArray R, OutputArray t, double focal = 1.0,
                 Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );
int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t, 
                 double distanceThresh, InputOutputArray mask = noArray(),
                 OutputArray triangulatedPoints = noArray());
E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中的点;
points2:第二张图片中的点;
cameraMatrix:相机内参矩阵,它是3x3的矩阵;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;
focal:相机焦距;
pp:像素坐标的原点;
distanceThresh:点的距离阈值,用来滤出距离较远的点;
triangulatedPoints:通过三角化还原点;

4 参考博客

SLAM之本质矩阵分解得相对变换的R和t – MathSword数值计算软件

https://note.youdao.com/ynoteshare/index.html?id=5e98f487c40ef22f90e1177f29271be5&type=note&_time=1666954937067


http://www.kler.cn/a/379288.html

相关文章:

  • 「Mac畅玩鸿蒙与硬件15」鸿蒙UI组件篇5 - Slider 和 Progress 组件
  • Linux中断、软中断、MMU内存映射-深入理解
  • Git 测验
  • 【AI】【提高认知】深度学习与反向传播:理解AI的基础
  • Golang | Leetcode Golang题解之第524题通过删除字母匹配到字典里最长单词
  • 如何在 Ubuntu 上安装和配置 GitLab
  • 宝塔FTP服务配置结合内网穿透实现安全便捷的远程文件管理和传输
  • 广东网站设计提升你网站在搜索引擎中的排名
  • 搭建支持国密GmSSL的Nginx环境
  • 【AI+教育】一些记录@2024.11.04
  • latex中公式之间的省略号
  • C++ 内存对齐:alignas 与 alignof
  • 基于Matlab 模拟停车位管理系统【源码 GUI】
  • Selenium的下载及chrome环境搭建
  • git入门教程14:Git与其他工具的集成
  • 构造有向(无向)加权图
  • 机器学习算法之回归算法
  • 来康生命科技有限公司心率监测解决方案在健身房与康养机构的应用探索
  • Docker Hub 镜像加速器
  • 鸿蒙Harmony-圆形绘制组件Circle使用详解
  • 基于python的机器学习(一)—— 基础知识(Scikit-learn安装)
  • JVM 类加载器
  • 单调栈--- 分奖金
  • 开源呼叫中心系统 FreeIPCC:WebRTC 详解
  • 贪心算法习题其二【力扣】【算法学习day.18】
  • dns服务部署 作业