当前位置: 首页 > article >正文

【综合算法学习】(第十九篇)

目录

不同路径(medium)

题目解析

讲解算法原理

编写代码

最⻓递增⼦序列(medium)

题目解析

讲解算法原理

编写代码


不同路径(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

⼀个机器⼈位于⼀个mxn⽹格的左上⻆(起始点在下图中标记为“Start”)。机器⼈每次只能向下或者向右移动⼀步。机器⼈试图达到⽹格的右下⻆(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
⽰例1:


输⼊:m=3,n=7
输出:28
⽰例2:
输⼊:m=3,n=2
输出:3
解释:
从左上⻆开始,总共有3条路径可以到达右下⻆。
1.向右->向下->向下
2.向下->向下->向右
3.向下->向右->向下

讲解算法原理

解法(暴搜->记忆化搜索->动态规划):
算法思路:
暴搜:

a. 递归含义:给 dfs ⼀个使命,给他⼀个下标,返回从 [0, 0] 位置⾛到 [i, j] 位置⼀
共有多少种⽅法;
b. 函数体:只要知道到达上⾯位置的⽅法数以及到达左边位置的⽅法数,然后累加起来即可;c. 递归出⼝:当下标越界的时候返回 0 ;当位于起点的时候,返回 1 。
记忆化搜索:
a. 加上⼀个备忘录;
b. 每次进⼊递归的时候,去备忘录⾥⾯看看;
c. 每次返回的时候,将结果加⼊到备忘录⾥⾯。
动态规划:
a. 递归含义->状态表⽰;
b. 函数体->状态转移⽅程;
c. 递归出⼝->初始化。

编写代码

c++算法代码:
 

class Solution
{
public:
 int uniquePaths(int m, int n) 
 {
 // 动态规划
 vector<vector<int>> dp(m + 1, vector<int>(n + 1));
 dp[1][1] = 1;
 for(int i = 1; i <= m; i++)
 for(int j = 1; j <= n; j++)
 {
 if(i == 1 && j == 1) continue;
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
 }
 return dp[m][n];
 // 记忆化搜索
 // vector<vector<int>> memo(m + 1, vector<int>(n + 1));
 // return dfs(m, n, memo);
 }
 int dfs(int i, int j, vector<vector<int>>& memo)
 {
 if(memo[i][j] != 0)
 {
 return memo[i][j];
 }
 if(i == 0 || j == 0) return 0;
 if(i == 1 && j == 1)
 {
 memo[i][j] = 1;
 return 1;
 }
 memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);
 return memo[i][j];
 }
};

java算法代码:

class Solution
{
 public int uniquePaths(int m, int n) 
 {
 // 动态规划
 int[][] dp = new int[m + 1][n + 1];
 dp[1][1] = 1;
 for(int i = 1; i <= m; i++)
 for(int j = 1; j <= n; j++)
 {
 if(i == 1 && j == 1) continue;
 dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
 }
 return dp[m][n];
 // 记忆化搜索
 // int[][] memo = new int[m + 1][n + 1];
 // return dfs(m, n, memo);
 }
 public int dfs(int i, int j, int[][] memo)
 {
 if(memo[i][j] != 0)
 {
 return memo[i][j];
 }
 if(i == 0 || j == 0) return 0;
 if(i == 1 && j == 1) 
 {
 memo[i][j] = 1;
 return 1;
 }
 memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);
 return memo[i][j];
 }
}

最⻓递增⼦序列(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

给你⼀个整数数组nums,找到其中最⻓严格递增⼦序列的⻓度。⼦序列是由数组派⽣⽽来的序列,删除(或不删除)数组中的元素⽽不改变其余元素的顺序。例
如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的⼦序列。
⽰例1:
输⼊:nums=[10,9,2,5,3,7,101,18]
输出:4
解释:最⻓递增⼦序列是[2,3,7,101],因此⻓度为4。
⽰例2:
输⼊:nums=[0,1,0,3,2,3]
输出:4
⽰例3:
输⼊:nums=[7,7,7,7,7,7,7]
输出:1
提⽰:
1<=nums.length<=2500
-10^4<=nums[i]<=10^4

讲解算法原理

解法(暴搜->记忆化搜索->动态规划):
算法思路:
暴搜:

a. 递归含义:给 dfs ⼀个使命,给他⼀个数 i ,返回以 i 位置为起点的最⻓递增⼦序列的⻓
度;
b. 函数体:遍历 i 后⾯的所有位置,看看谁能加到 i 这个元素的后⾯。统计所有情况下的最⼤
值。
c. 递归出⼝:因为我们是判断之后再进⼊递归的,因此没有出⼝~
记忆化搜索:
a. 加上⼀个备忘录;
b. 每次进⼊递归的时候,去备忘录⾥⾯看看;
c. 每次返回的时候,将结果加⼊到备忘录⾥⾯。
动态规划:
a. 递归含义->状态表⽰;
b. 函数体->状态转移⽅程;
c. 递归出⼝->初始化。

编写代码

c++算法代码:

class Solution
{
public:
 int lengthOfLIS(vector<int>& nums) 
 {
 // 动态规划
 int n = nums.size();
 vector<int> dp(n, 1);
 int ret = 0;
 // 填表顺序:从后往前
 for(int i = n - 1; i >= 0; i--)
 {
 for(int j = i + 1; j < n; j++)
 {
 if(nums[j] > nums[i])
 {
 dp[i] = max(dp[i], dp[j] + 1);
 }
 }
 ret = max(ret, dp[i]);
 }
 return ret;
 
 // 记忆化搜索
 // 
 // vector<int> memo(n);
 // int ret = 0;
 // for(int i = 0; i < n; i++)
 // ret = max(ret, dfs(i, nums, memo));
 // return ret;
 }
 int dfs(int pos, vector<int>& nums, vector<int>& memo)
 {
 if(memo[pos] != 0) return memo[pos];
 int ret = 1;
 for(int i = pos + 1; i < nums.size(); i++)
 {
 if(nums[i] > nums[pos])
 {
 ret = max(ret, dfs(i, nums, memo) + 1);
 }
 }
 memo[pos] = ret;
 return ret;
 }
};

java算法代码:

class Solution
{
 public int lengthOfLIS(int[] nums) 
 {
 int n = nums.length;
 int[] dp = new int[n];
 int ret = 0;
 Arrays.fill(dp, 1);
 // 填表顺序: 从后往前
 for(int i = n - 1; i >= 0; i--)
 {
 for(int j = i + 1; j < n; j++)
 {
 if(nums[j] > nums[i])
 {
 dp[i] = Math.max(dp[i], dp[j] + 1);
 }
 }
 ret = Math.max(ret, dp[i]);
 }
 return ret;
 
 // 记忆化搜索
 // int ret = 0;
 // int n = nums.length;
 // int[] memo = new int[n];
 // for(int i = 0; i < n; i++)
 // {
 // ret = Math.max(ret, dfs(i, nums, memo));
 // }
 // return ret;
 }
 public int dfs(int pos, int[] nums, int[] memo)
 {
 if(memo[pos] != 0) return memo[pos];
 int ret = 1;
 for(int i = pos + 1; i < nums.length; i++)
 {
 if(nums[i] > nums[pos])
 {
 ret = Math.max(ret, dfs(i, nums, memo) + 1);
 }
 }
 memo[pos] = ret;
 return ret;
 }
}


http://www.kler.cn/a/380681.html

相关文章:

  • 商品信息的修改、删除功能
  • map和set和pair
  • UI自动化测试 —— CSS元素定位实践!
  • mysql 查看数据库、表的基本命令
  • qt QMenuBar详解
  • Spring Boot 内置工具类
  • 32位汇编——通用寄存器
  • 30条勒索病毒处置原则
  • 图文并茂java源码解析-HashMap
  • 二百七十三、Kettle——ClickHouse中增量导入数据准确性统计表数据(1天1次)
  • Sigrity Power SI 3D-EM Full Wave Spatial模式如何查看空间电压频域曲线操作指导
  • 自杀一句话木马(访问后自动删除)
  • 影刀RPA实战:嵌入python,如虎添翼
  • Docker Compose部署Powerjob
  • golang rocketmq开发
  • 【Vue】在 Vue 组件的 methods 中,箭头函数和不带箭头函数中的this的区别
  • Qt中的动态链接库编程(Q_DECL_IMPORT、Q_DECL_EXPORT)
  • 中文NLP地址要素解析【阿里云:天池比赛】
  • 度小满,让“推理大模型”走向金融核心业务
  • Java栈和队列的快速入门
  • 如何使用Varjo直接观看Blender内容
  • ubuntu工具 -- 北京理工大学Linux服务器自动登录校园网 (官方脚本方案), 永远不断
  • Jmeter基础篇(20)压测时如何找到最佳并发量
  • QT-C++ 西门子snap7通讯库接口
  • 计算机网络——TCP中的流量控制和拥塞控制
  • 无人机目标检测与语义分割数据集(猫脸码客 第238期)