当前位置: 首页 > article >正文

系统聚类的分类数确定——聚合系数法

 breast_cancer数据集分析——乳腺癌诊断

#读取乳腺癌数据
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y = data.target

 .. _breast_cancer_dataset:

Breast cancer wisconsin (diagnostic) dataset
--------------------------------------------

**Data Set Characteristics:**

:Number of Instances: 569

:Number of Attributes: 30 numeric, predictive attributes and the class

:Attribute Information:
    - radius (mean of distances from center to points on the perimeter)
    - texture (standard deviation of gray-scale values)
    - perimeter
    - area
    - smoothness (local variation in radius lengths)
    - compactness (perimeter^2 / area - 1.0)
    - concavity (severity of concave portions of the contour)
    - concave points (number of concave portions of the contour)
    - symmetry
    - fractal dimension ("coastline approximation" - 1)

    The mean, standard error, and "worst" or largest (mean of the three
    worst/largest values) of these features were computed for each image,
    resulting in 30 features.  For instance, field 0 is Mean Radius, field
    10 is Radius SE, field 20 is Worst Radius.

    - class:
            - WDBC-Malignant
            - WDBC-Benign

:Summary Statistics:

===================================== ====== ======
                                        Min    Max
===================================== ====== ======
radius (mean):                        6.981  28.11
texture (mean):                       9.71   39.28
perimeter (mean):                     43.79  188.5
area (mean):                          143.5  2501.0
smoothness (mean):                    0.053  0.163
compactness (mean):                   0.019  0.345
concavity (mean):                     0.0    0.427
concave points (mean):                0.0    0.201
symmetry (mean):                      0.106  0.304
fractal dimension (mean):             0.05   0.097
radius (standard error):              0.112  2.873
texture (standard error):             0.36   4.885
perimeter (standard error):           0.757  21.98
area (standard error):                6.802  542.2
smoothness (standard error):          0.002  0.031
compactness (standard error):         0.002  0.135
concavity (standard error):           0.0    0.396
concave points (standard error):      0.0    0.053
symmetry (standard error):            0.008  0.079
fractal dimension (standard error):   0.001  0.03
radius (worst):                       7.93   36.04
texture (worst):                      12.02  49.54
perimeter (worst):                    50.41  251.2
area (worst):                         185.2  4254.0
smoothness (worst):                   0.071  0.223
compactness (worst):                  0.027  1.058
concavity (worst):                    0.0    1.252
concave points (worst):               0.0    0.291
symmetry (worst):                     0.156  0.664
fractal dimension (worst):            0.055  0.208
===================================== ====== ======

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator:  Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street

:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass.  They describe
characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree.  Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.

The actual linear program used to obtain the separating plane
in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

.. dropdown:: References

  - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction
    for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on
    Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
    San Jose, CA, 1993.
  - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and
    prognosis via linear programming. Operations Research, 43(4), pages 570-577,
    July-August 1995.
  - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
    to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)
    163-171.
 

 

#读取乳腺癌数据
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y = data.target
#显示数据集
print(data.DESCR)
#显示数据dataframe结果
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
df.head()
#写入csv文件
df.to_csv('breast_cancer.csv', index=False)

聚合系数法确定最优聚类数。

#使用聚合系数确定最佳聚类数
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
sil = []
for i in range(2,11):
    model = AgglomerativeClustering(n_clusters=i)
    y_pred = model.fit_predict(X)
    sil.append(silhouette_score(X, y_pred))
plt.plot(range(2,11), sil)
plt.show()

 

谱系图绘制 


#根据最佳聚类数绘制树状图
from scipy.cluster.hierarchy import dendrogram, ward
model = AgglomerativeClustering(n_clusters=2)
    
y_pred = model.fit_predict(X)
linkage_array = ward(X)
dendrogram(linkage_array)
ax = plt.gca()
ax.set_xlabel("Sample index")
ax.set_ylabel("Cluster distance")
bounds = ax.get_ybound()
ax.plot(bounds, [40, 40], '--', c='k')
ax.plot(bounds, [5, 5], '--', c='k')
plt.show()


http://www.kler.cn/a/382644.html

相关文章:

  • 怎么在哔哩哔哩保存完整视频
  • 线程池执行流程
  • 【MWorks】Ubuntu 系统搭建
  • Vue.js 组件开发:构建高效、可重用的用户界面
  • ECC校验算法的验证
  • 飞牛OS在Docker中安装ODOO ERP系统
  • 【学术精选】SCI期刊《Electronics》特刊“New Challenges in Remote Sensing Image Processing“
  • EasyExcel 学习之 导出 “提示问题”
  • 基于 Encoder-Decoder 架构的大语言模型
  • C++之list的使用
  • 02- 模块化编程-006 ADC0808数码显示对比
  • python-读写Excel:openpyxl-(4)下拉选项设置
  • 24软件包的查找、安装、更新和卸载
  • 100种算法【Python版】第51篇——希尔排序
  • Excel怎么转换成word?分享两种方法!
  • 基于matlab的基于Tent混沌映射改进的麻雀搜索算法SSA优化BP神经网络预测
  • 【北京迅为】《STM32MP157开发板嵌入式开发指南》-第七十八章 Qt控制硬件
  • NLP论文速读|LOGO -- Long context aliGnment via efficient preference Optimization
  • ChatGPT任务设计和微调策略的优化
  • 泉州市工业和信息化局关于开展排查运维安全管理系统安全漏洞的通知
  • #JavaScript 宏任务与微任务详解
  • 2-146 基于matlab的双摆杆系统建模分析
  • Tomcat 启动卡住,日志显示 At least one JAR was scanned for TLDs yet contained no TLDs.
  • 【C语言】实战-力扣题库:回文链表
  • 【LeetCode】【算法】238. 除自身以外数组的乘积
  • Hadoop集群的高可用(HA)-(2、搭建resourcemanager的高可用)