当前位置: 首页 > article >正文

【Zynq FPGA】基于 Zynq FPGA 的雷龙 SD NAND 测试

对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且LGA-8封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。贴上测试工程的链接,还迎复现实验: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_t

目录

一、SD NAND特征

二、SD卡样片

三、Zynq测试平台搭建

四、软件搭建

五、测试结果

六、总结


一、SD NAND特征

1.1 SD卡简介

  雷龙的SD NAND有很多型号,在测试中使用的是CSNP4GCR01-AMW与CSNP32GCR01-AOW。芯片是基于NAND FLASH和 SD控制器实现的SD卡。具有强大的坏块管理和纠错功能,并且在意外掉电的情况下同样能保证数据的安全。

  其特点如下:

接口支持SD2.0 2线或4线;

电压支持:2.7V-3.6V;

默认模式:可变时钟速率0 - 25MHz,高达12.5 MB/s的接口速度(使用4条并行数据线)

高速模式:可变时钟速率0 - 50MHz,高达25 MB/s的接口速度(使用4条并行数据线)

工作温度:-40°C ~ +85°C

存储温度:-55°C ~ +125°C

待机电流小于250uA

修正内存字段错误;

内容保护机制——符合SDMI最高安全标准

SDNAND密码保护(CMD42 - LOCK_UNLOCK)

采用机械开关的写保护功能

内置写保护功能(永久和临时)

应用程序特定命令

舒适擦除机制

  该SD卡支持SDIO读写和SPI读写,最高读写速度可达25MB/s,实际读写速度要结合MCU和接口情况实测获得。通常在简单嵌入式系统并对读写速度要求不高的情况下,会使用SPI协议进行读写。但不管使用SDIO还是SPI都需要符合相关的协议规范,才能建立相应的文件系统;

1.2 SD卡Block图

该SD卡封装为LGA-8;引脚分配与定义如下;在这里插入图片描述:

二、SD卡样片

  与样片同时寄来的还有转接板,转接板将LGA-8封装的芯片转接至SD卡封装,这样只需将转接板插入SD卡卡槽即可使用。

在这里插入图片描述:

三、Zynq测试平台搭建

  •   测试平台为 Xilinx 的Zynq 7020 FPGA芯片;

  •   板卡:Digilent Zybo Z7

  •   Vivado版本:2018.3

  •   文件系统:FATFS

  •   SD卡接口:SD2.0

3.1 测试流程

  本次测试主要针对4G和32G两个不同容量的SD卡,在Zynq FPGA上搭建SD卡读写回路,从而对SD卡读写速度进行测试,并检验读写一致性;

测试流程:

  进入测试程序前,首先会对SD卡初始化并初始化建立FATFS文件系统,随后进入测试SD卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

  通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复100次并打印报告。

3.2 SOC搭建

  硬件搭建框图如下,我们在本次系统中使用PS端的SDIO接口来驱动SD NAND芯片,并通过UART向PC打印报告;

  PL端的硬件搭建也很简单,只需一个Timer定时器来做时间测量;

我们直接使用Zybo板卡文件创建一个工程,工程会将Zybo具有的硬件资源配置好;

首先点击setting->IP->Repository->+;添加Timer IP核的路径,Timer IP核会在工程中给出;

点击Create Block Design创建BD工程

 在创建的过程中添加Zynq 内核;

 由于我们使用了板卡文件,所以内核IP是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置DDR等配置;

  双击内核IP,点击Clock Configuration->PL Fabric Clocks,将FCLK_CLK0的时钟频率修改为100Mhz

 添加TimerA IP;

依次点击上方的自动设计,完成SOC搭建;

 点击BD设计,并创建顶层文件

生成比特流文件;

       在生成比特流文件后,将其导入SDK;

  点击Export->Export Hardware,导出硬件;然后点击Launch SDK打开SDK进行软件设计;

四、软件搭建

  在SDK中新建一个空白工程;

  点击file -> new -> Application project;

在新建的过程中创建一个main.c文件,并在里面编写测试程序如下:

  在每次读写开始前,通过TimerA0_start()函数开始计时,在读写结束后可以通过TimerA0_stop()结束计时,从而测得消耗时间。

  相应的Timer驱动函数在user/TimerA_user.c中定义;

#include "xparameters.h"    /* SDK generated parameters */

#include "xsdps.h"        /* SD device driver */

#include "xil_printf.h"

#include "ff.h"

#include "xil_cache.h"

#include "xplatform_info.h"

#include "time.h"

#include "../user/headfile.h"



#define    PACK_LEN       32764



static FIL fil;        /* File object */

static FATFS fatfs;



static char FileName[32] = "Test.txt";

static char *SD_File;



char DestinationAddress[PACK_LEN] ;



char txt[1024];

char test_buffer[PACK_LEN];



void TimerA0_init()

{

    TimerA_reset(TimerA0);//reset timerA device

    TimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1Mhz

    TimerA_Stop_Counter(TimerA0);//stop timerA

}



void TimerA0_start()

{

    TimerA_SetAs_CONTINUS_Mode(TimerA0);

}



void TimerA0_stop()

{

    TimerA_Stop_Counter(TimerA0);

}









uint32 SDCard_test()

{

    uint8 Res;

    uint32 NumBytesRead;

    uint32 NumBytesWritten;

    uint32 BuffCnt;

    uint8 work[FF_MAX_SS];

    uint32 take_time=0;

    uint32 speed = 0;

    uint32 test_time = 0;

    uint32 w_t=0;

    uint32 r_t=0;

    float wsum = 0;

    float rsum = 0;





    TCHAR *Path = "0:/";



    for(int i=0;i<PACK_LEN;i++)

    {

        test_buffer[i] = 'a';

    }



    Res = f_mount(&fatfs, Path, 0);



    if (Res != FR_OK) {

        return XST_FAILURE;

    }



    Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);

    if (Res != FR_OK) {

        return XST_FAILURE;

    }



    SD_File = (char *)FileName;



    Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);

    if (Res) {

        return XST_FAILURE;

    }



    Res = f_lseek(&fil, 0);

    if (Res) {

        return XST_FAILURE;

    }



    while(1)

    {

        TimerA_reset(TimerA0);

        TimerA0_start();

        Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,

                &NumBytesWritten);

        TimerA0_stop();

        take_time = TimerA_Read_Counter_Register(TimerA0);

        w_t+=take_time;

        xil_printf("--------------------------------\n");

        xil_printf("take time:%d us\n",take_time);

        speed = PACK_LEN*(1000000/((float)(take_time)));

        sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);

        wsum = wsum+speed;

        xil_printf(txt);

        xil_printf("--------------------------------\n");

        if (Res) {

            return XST_FAILURE;

        }



        Res = f_lseek(&fil, 0);

        if (Res) {

            return XST_FAILURE;

        }



        TimerA_reset(TimerA0);

        TimerA0_start();

        Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,

                &NumBytesRead);

        TimerA0_stop();

        take_time = TimerA_Read_Counter_Register(TimerA0);

        r_t+=take_time;

        xil_printf("--------------------------------\n");

        xil_printf("take time:%d us\n",take_time);

        speed = PACK_LEN*(1000000/((float)(take_time)));

        sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);

        rsum = rsum+speed;

        xil_printf(txt);

        xil_printf("--------------------------------\n");

        if (Res) {

            return XST_FAILURE;

        }





        for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){

            if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){

                xil_printf("%dno",BuffCnt);

                return XST_FAILURE;

            }

        }

        xil_printf("test num:%d data check right!\n",test_time+1);

        test_time++;

        if(test_time==100)

        {

            sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);

            xil_printf(txt);

            sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);

            xil_printf(txt);

            Res = f_close(&fil);

            if (Res) {

                return XST_FAILURE;

            }

            return 0;

        }

    }



}



int main(void)

{

    TimerA0_init();



    SDCard_test();

    xil_printf("finish");

    return 0;

}

五、测试结果

  经测试,两种型号的芯片读写速度如下图表所示。

  其SD NAND的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合SD卡的特性;

  对比两种型号SD NAND芯片,发现CSNP32GCR01-AOW型号具有更高的读写速度;

六、总结

  本来打算拿这些样片去试试信息安全领域是否有所应用,但发现其似乎内置了复位或初始化,导致无法提取上电时的不确定值,故无法提取该SD NAND的物理不可克隆特性,所以这方面的测试无法进行;

  对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且LGA-8封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。

  最后贴上测试工程的链接,还迎复现实验: SD_Nand_Zynq700_test: SD Nand SOC test

————————————————

【本文参考自CSDN,作者:PPRAM】

  亲爱的卡友们,如果看完文章之后还是有疑惑或不懂的地方,请联系,自己去理解或猜答案是件很累的事,请把最麻烦的事情交给我们来处理,术业有专攻,闻道有先后,深圳市雷龙发展专注存储行业13年,专业提供小容量存储解决方案。

SD NAND-贴片式TF卡-贴片式SD卡-免费样品包邮-【雷龙发展】 - SD NAND,贴片式TF卡,贴片式SD卡,SPI NAND, PSLC NAND,存储芯片,闪存芯片icon-default.png?t=O83Ahttps://www.longsto.com/


http://www.kler.cn/a/382772.html

相关文章:

  • Eclipse配置Tomcat服务器(最全图文详解)
  • 如何让用户在网页中填写PDF表格?
  • 33.3K 的Freqtrade:开启加密货币自动化交易之旅
  • 用豆包MarsCode IDE打造精美数据大屏:从零开始的指南
  • 深入理解 React 中 setState 的行为及状态更新时机
  • 对话|全年HUD前装将超330万台,疆程技术瞄准人机交互“第一屏”
  • Java 8 Lambda 表达式和函数式接口的底层实现机制详解
  • 【Linux】【守护进程】总结整理
  • 【AI开源项目】FastGPT - 快速部署FastGPT以及使用知识库的两种方式!
  • hive表内外表之间切换
  • Docker 镜像拉不动?自建 Docker Hub 加速站 解决镜像拉取失败
  • 非凸科技助力第49届ICPC亚洲区域赛(成都)成功举办
  • ELK-ELK基本概念_ElasticSearch的配置
  • 立冬:冬日序曲的温柔启幕
  • Renesas R7FA8D1BH (Cortex®-M85) 存储空间介绍
  • 无人机之飞行管控平台篇
  • Linux查看端口占用及Windows查看端口占用
  • 电话语音机器人,是由哪些功能构成?
  • 通过Django 与 PostgreSQL 进行WEB开发详细流程
  • HTMLCSS:爱上班的猫咪
  • InnoDB 存储引擎<五>undo log, redo log,以及双写缓冲区
  • 服务器开放了mongodb数据库的外网端口,但是用mongodbCompass还是无法连接。
  • go build --gcflags是什么意思, go build后面还可以接哪些选项
  • 荣耀2025秋招面试题:DiT与传统Stable Diffusion的区别
  • 【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程
  • Spark 中 RDD 的诞生:原理、操作与分区规则