当前位置: 首页 > article >正文

第30周:彩色图片分类(Tensorflow实战第二周)

目录

前言

一、前期工作

1.1 设置GPU

1.2 导入数据

1.3 数据归一化

1.4 数据可视化

二、构建CNN网络

2.1 基本概念

2.2 代码实现

三、编译

四、训练模型

五、预测

六、模型评估

总结


前言

  • 🍨 本文为[🔗365天深度学习训练营]中的学习记录博客
  • 🍖 原作者:[K同学啊]

说在前面

1)本周任务:学习如何编写一个完整的深度学习程序;了解分类彩色图片和灰度图片有什么区别;测试集accuracy到达72%

2)运行环境:Python3.6、Pycharm2020、tensorflow2.4.0


一、前期工作

1.1 设置GPU

代码如下:

# 1.1 设置GPU
import tensorflow as tf
import matplotlib.pyplot as plt
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

1.2 导入数据

代码如下:

# 1.2 导入数据
from tensorflow.keras import datasets, layers, models
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

1.3 数据归一化

代码如下:

# 1.3 归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
print(train_images.shape, test_images.shape,
      train_labels.shape, test_labels.shape)

打印输出:(50000, 32, 32, 3) (10000, 32, 32, 3) (50000, 1) (10000, 1)

1.4 数据可视化

代码如下:

#1.4 可视化
class_names = ['airplane', 'automobile', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5, 10, i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

打印输出:

二、构建CNN网络

2.1 基本概念

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。

池化层包括最大池化层(MaxPooling)和平均池化层(AveragePooling),均值池化对背景保留更好,最大池化对纹理提取更好)。同卷积计算,池化层计算窗口内的平均值或者最大值。例如通过一个 2*2 的最大池化层,其计算方式如下:

模型结构图如下:

2.2 代码实现

代码如下:

# 二、构建CNN网络
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),  # 卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),  # 池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),  # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3

    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(10)  # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

打印输出:

三、编译

代码如下:

# 三、编译
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

代码如下:

# 四、训练模型
history = model.fit(train_images, train_labels, epochs=15,
                    validation_data=(test_images, test_labels))

打印输出:

Epoch 1/15
1563/1563 [==============================] - 14s 9ms/step - loss: 1.7816 - accuracy: 0.3393 - val_loss: 1.2449 - val_accuracy: 0.5547
Epoch 2/15
1563/1563 [==============================] - 13s 9ms/step - loss: 1.1769 - accuracy: 0.5798 - val_loss: 1.0685 - val_accuracy: 0.6210
Epoch 3/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.9999 - accuracy: 0.6487 - val_loss: 0.9839 - val_accuracy: 0.6495
Epoch 4/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.8891 - accuracy: 0.6879 - val_loss: 0.9301 - val_accuracy: 0.6766
Epoch 5/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.8108 - accuracy: 0.7143 - val_loss: 0.8857 - val_accuracy: 0.6947
Epoch 6/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.7571 - accuracy: 0.7332 - val_loss: 0.8756 - val_accuracy: 0.6972
Epoch 7/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.7010 - accuracy: 0.7553 - val_loss: 0.8619 - val_accuracy: 0.7076
Epoch 8/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.6609 - accuracy: 0.7689 - val_loss: 0.8532 - val_accuracy: 0.7094
Epoch 9/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.6190 - accuracy: 0.7837 - val_loss: 0.8639 - val_accuracy: 0.7116
Epoch 10/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.5839 - accuracy: 0.7942 - val_loss: 0.8705 - val_accuracy: 0.7124
Epoch 11/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.5361 - accuracy: 0.8089 - val_loss: 0.8650 - val_accuracy: 0.7137
Epoch 12/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.5089 - accuracy: 0.8208 - val_loss: 0.8719 - val_accuracy: 0.7175
Epoch 13/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.4602 - accuracy: 0.8381 - val_loss: 0.9218 - val_accuracy: 0.7135
Epoch 14/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.4410 - accuracy: 0.8457 - val_loss: 0.9610 - val_accuracy: 0.7150
Epoch 15/15
1563/1563 [==============================] - 14s 9ms/step - loss: 0.4147 - accuracy: 0.8511 - val_loss: 0.9712 - val_accuracy: 0.7118
 

五、预测

代码如下:

# 五、预测
plt.imshow(test_images[1])
import numpy as np
pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])

打印输出:ship

六、模型评估

代码如下:

# 六、模型评估
plt.figure(figsize=(10,5))
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.yticks(fontsize=10)
plt.xticks(fontsize=10)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(test_acc)

打印输出:

0.7117999792098999

修改优化器为SGD,这时输出的测试集准确率为0.6492000222206116,所以对于本文任务而言,Adam优化器更适用;又继续修改了epoch=20,准确率达到了0.717199981212616


总结

  • 对基于tensorflow框架下搭建深度学习模型的框架有了进一步的了解
  • 分类彩色图片和灰度图片的区别主要体现在以下几个方面:

1)数据维度

彩色图片:通常由三种颜色通道组成(如RGB:红、绿、蓝),每个通道包含了图像的亮度信息,形成一个三维的数据结构。每个像素用三组值表示。

灰度图片:只有一个通道,表示图像的亮度,通常范围是0(黑)到255(白)之间的单一数值。每个像素只用一个值表示。

2)信息丰富度

彩色图片:含有更多的信息和细节,能够传达颜色的变化、色彩的深度和丰富性,适合表现复杂的场景和对象。

灰度图片:信息相对简单,主要通过不同的亮度级别来表现图像的结构和形状,通常用在需要关注形状和轮廓的应用中。

3)处理和计算复杂度

彩色图片:由于亚像素层面上的数据量大,处理和计算通常更加复杂,需要较多的计算资源和时间。

灰度图片:计算更简单,处理速度较快,因为只有一个通道的数据

  • 通过调整训练的epoch提高了测试集上的准确率

http://www.kler.cn/a/384270.html

相关文章:

  • 解析Eureka的架构
  • 华为HCIP —— QinQ技术实验配置
  • 【LeetCode】【算法】287. 寻找重复数
  • 高级SQL技巧
  • 水资源遥测终端机助力灌区信息化建设
  • 关于诊断中的各种时间参数
  • 【go从零单排】go中的结构体struct和method
  • Python中的多线程效率分析
  • 基于YOLOv8 Web的安全帽佩戴识别检测系统的研究和设计,数据集+训练结果+Web源码
  • 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
  • java访问华为网管软件iMaster NCE的北向接口时传递参数问题
  • Java基础概览和常用知识(二十一)
  • JS常用数组方法 reduce filter find forEach
  • Qt项目实战:银行利息(贷款)计算器
  • android camera data -> surface 显示
  • 北京美信时代渠道代理:运维后期维保服务策略
  • element-plus按需引入报错AutoImport is not a function
  • 利用Python 的爬虫技术淘宝天猫销量和库存
  • 基于SpringBoot的“校园交友网站”的设计与实现(源码+数据库+文档+PPT)
  • 「Mac畅玩鸿蒙与硬件26」UI互动应用篇3 - 倒计时和提醒功能实现
  • Zabbix监控架构
  • 提示工程(Prompt Engineering):大模型微调Prompt/Instruct Mode;稀疏向量与稠密向量进行词语编码
  • Scala访问控制权限详解与应用实践 #Scala #scala
  • 履带机器人(一、STM32控制部分--标准库)
  • MyBatis项目的创建和增删查改操作
  • 计算机的发展史