当前位置: 首页 > article >正文

初级数据结构——顺序表

目录

  • 前言
  • 一、定义与特点
  • 二、类型
  • 三、基本操作
  • 四、应用场景
  • 五、优缺点
  • 六、元素插入和删除动态图解
    • 插入
    • 删除
  • 七、代码模板
  • 八、使用顺序表的经典例题
    • 1.求奇数的乘积
      • 代码题解
    • 2.数值统计
      • 代码题解
  • 九、总结
  • 结语

前言

顺序表示最基础的数据结构之一,它也是我们学习开始学习数据结构的第一个必须要掌握的数据结构,学习数据结构一定是由浅到深,所以我们最好是先学习简单的在学习有难度的,因为直接学习难的数据结构很容易劝退,让我们来深入了解顺序表。
在这里插入图片描述

一、定义与特点

定义:顺序表(Sequence List)是线性表的一种实现方式,它使用一段地址连续的存储单元依次存储线性表的数据元素。

特点
1.数据元素在物理存储上是连续的,这使得顺序表在访问元素时具有较高的效率。
2.顺序表支持随机访问,即可以通过索引直接访问表中的任意元素,时间复杂度为O(1)。
3.顺序表的插入和删除操作可能需要移动大量的元素,尤其是在插入或删除中间位置的元素时,时间复杂度为O(N),其中N是表中元素的数量。

二、类型

静态顺序表:静态顺序表在初始化后,其空间大小就不能更改。这意味着如果空间不足,就无法向表中添加新的元素;而如果空间过大,则可能造成内存的浪费。因此,静态顺序表在实际应用中具有一定的局限性。

动态顺序表:动态顺序表则可以根据需要动态地调整空间大小。当空间不足时,可以自动扩容;当空间过多时,也可以进行缩容(尽管在实际应用中缩容并不常见)。这使得动态顺序表在实际应用中更加灵活和高效

三、基本操作

初始化:为顺序表分配必要的存储空间,并初始化相关参数(如有效数据个数、容量等)。

销毁:释放顺序表所占用的存储空间,以避免内存泄漏。
插入:在顺序表的指定位置插入一个新的元素。这可能需要移动其他元素来腾出位置。

删除:从顺序表中删除指定位置的元素。这同样可能需要移动其他元素来填补位置。

查找:在顺序表中查找指定值的元素,并返回其位置(如果存在)。这通常通过遍历数组来实现。

访问:通过索引直接访问顺序表中的指定元素。这是顺序表的一个主要优点。

四、应用场景

顺序表适用于需要频繁访问元素的场景,因为顺序表支持随机访问,可以在常数时间内访问到表中的任意元素。此外,顺序表也适用于元素个数相对稳定的场景,因为频繁的插入和删除操作可能会导致顺序表的效率下降。

五、优缺点

优点
支持随机访问,访问速度快。
在物理存储上是连续的,有利于CPU高速缓存的命中率。

缺点
插入和删除操作可能需要移动大量的元素,效率较低。
在空间不足时需要扩容,扩容操作可能比较耗时且浪费空间(尽管通常采用两倍扩容策略来减少扩容次数)。

六、元素插入和删除动态图解

插入

在这里插入图片描述

删除

在这里插入图片描述

七、代码模板

#include<iostream>
using namespace std;

#define eType int

struct SequentialTable {
	eType* elements;
	int size;
	int capacity;
};

void initailizeTable(SequentialTable* list, int capacity) {//1.初始化顺序表
	list->elements = new eType[capacity];//elements申请内存为eType类型的内存空间,相当于数组容量为capacity
	list->capacity = capacity;
	list->size = 0;

}

void destroyTable(SequentialTable* list) {//销毁顺序表
	delete[] list->elements;//将elements内存空间销毁
}

int getSize(SequentialTable* list) {//顺序表长度
	return list->size;
}

bool isEmpty(SequentialTable* list) {//顺序表是否为空
	return list->size == 0;
}

void insertElement(SequentialTable* list,int index, eType x) {//插入元素 ,index为插入位置,x为插入的元素
	if (index<0 || index>list->size) {
		throw std::invalid_argument("Invalid index");//插入位置非法那么抛出异常
	}
	if (list->size == list->capacity) {//如果顺序表长度大于容量那就扩容
		int newCapacity = 2 * list->capacity;//容量扩大为原来的两倍
		eType* newElements = new eType[newCapacity];
		for (int i = 0; i < list->size; i++) {
			newElements[i] = list->elements[i];
		}
		delete[] list->elements;//释放原来内存空间
		list->elements = newElements;
		list->capacity = newCapacity;
	}
	for (int i = list->size; i > index; i--) {
		list->elements[i] = list->elements[i - 1];
	}
	list->elements[index] = x;
	list->size++;//注意插入元素,长度加一
}

void deleteElement(SequentialTable* list, int index) {
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	if (list->size == 0) {//如果顺序表没有元素那么进行不了删除操作,抛出异常
		throw std::invalid_argument("Invalid index");
	}
	for (int i = index; i < list->size - 1; i++) {
		list->elements[i] = list->elements[i + 1];
	}
	list->size--;//长度减一
}

int findElement(SequentialTable* list, eType x) {//找出元素的索引
	for (int i = 0; i < list->size; i++) {
		if (x == list->elements[i])return i;
	}
	return -1;//找不到返回-1
}

eType getElement(SequentialTable* list, int index) {//返回索引对应的元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	return list->elements[index];
}

void updateElement(SequentialTable* list, int index, eType x) {//更新元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	list->elements[index] = x;
}

int main() {//测试代码
	SequentialTable st;
	initailizeTable(&st, 10);
	for (int i = 0; i < 10; i++) {
		insertElement(&st, i, i * 10);
	}
	deleteElement(&st, 0);
	cout << st.elements[0] << endl;
	insertElement(&st, 0, 0);
	cout << st.elements[0] << endl;
	cout << isEmpty(&st) << endl;
	cout << findElement(&st, 70) << endl;
	cout << getElement(&st, 7) << endl;
	updateElement(&st, 0, 1);
	cout << st.elements[0] << endl;
	return 0;
}

八、使用顺序表的经典例题

1.求奇数的乘积

(帅哥们这个蓝色字体可以点进去看原题)

代码题解

#include<iostream>
using namespace std;

#define eType int

struct SequentialTable {
	eType* elements;
	int size;
	int capacity;
};

void initailizeTable(SequentialTable* list, int capacity) {//1.初始化顺序表
	list->elements = new eType[capacity];//elements申请内存为eType类型的内存空间,相当于数组容量为capacity
	list->capacity = capacity;
	list->size = 0;

}

void destroyTable(SequentialTable* list) {//销毁顺序表
	delete[] list->elements;//将elements内存空间销毁
}

int getSize(SequentialTable* list) {//顺序表长度
	return list->size;
}

bool isEmpty(SequentialTable* list) {//顺序表是否为空
	return list->size == 0;
}

void insertElement(SequentialTable* list,int index, eType x) {//插入元素 ,index为插入位置,x为插入的元素
	if (index<0 || index>list->size) {
		throw std::invalid_argument("Invalid index");//插入位置非法那么抛出异常
	}
	if (list->size == list->capacity) {//如果顺序表长度大于容量那就扩容
		int newCapacity = 2 * list->capacity;//容量扩大为原来的两倍
		eType* newElements = new eType[newCapacity];
		for (int i = 0; i < list->size; i++) {
			newElements[i] = list->elements[i];
		}
		delete[] list->elements;//释放原来内存空间
		list->elements = newElements;
		list->capacity = newCapacity;
	}
	for (int i = list->size; i > index; i--) {
		list->elements[i] = list->elements[i - 1];
	}
	list->elements[index] = x;
	list->size++;//注意插入元素,长度加一
}

void deleteElement(SequentialTable* list, int index) {
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	if (list->size == 0) {//如果顺序表没有元素那么进行不了删除操作,抛出异常
		throw std::invalid_argument("Invalid index");
	}
	for (int i = index; i < list->size - 1; i++) {
		list->elements[i] = list->elements[i + 1];
	}
	list->size--;//长度减一
}

int findElement(SequentialTable* list, eType x) {//找出元素的索引
	for (int i = 0; i < list->size; i++) {
		if (x == list->elements[i])return i;
	}
	return -1;//找不到返回-1
}

eType getElement(SequentialTable* list, int index) {//返回索引对应的元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	return list->elements[index];
}

void updateElement(SequentialTable* list, int index, eType x) {//更新元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	list->elements[index] = x;
}

int main() {//测试代码
	int n;
	while (cin >> n) {
		SequentialTable s;
		initailizeTable(&s, 1);
		for (int i = 0; i < n; i++) {
			int x;
			cin >> x;
			insertElement(&s, i, x);
		}
		int ret = 1;
		for (int i = 0; i < s.size; i++) {
			int val = getElement(&s, i);
			if (val & 1)ret *= val;
		}
		cout << ret << endl;
	}
	
	return 0;
}

2.数值统计

(帅哥们这个蓝色字体可以点进去看原题)

代码题解

#include<iostream>
using namespace std;

#define eType double//元素类型

struct SequentialTable {
	eType* elements;
	int size;
	int capacity;
};

void initailizeTable(SequentialTable* list, int capacity) {//1.初始化顺序表
	list->elements = new eType[capacity];//elements申请内存为eType类型的内存空间,相当于数组容量为capacity
	list->capacity = capacity;
	list->size = 0;

}

void destroyTable(SequentialTable* list) {//销毁顺序表
	delete[] list->elements;//将elements内存空间销毁
}

int getSize(SequentialTable* list) {//顺序表长度
	return list->size;
}

bool isEmpty(SequentialTable* list) {//顺序表是否为空
	return list->size == 0;
}

void insertElement(SequentialTable* list,int index, eType x) {//插入元素 ,index为插入位置,x为插入的元素
	if (index<0 || index>list->size) {
		throw std::invalid_argument("Invalid index");//插入位置非法那么抛出异常
	}
	if (list->size == list->capacity) {//如果顺序表长度大于容量那就扩容
		int newCapacity = 2 * list->capacity;//容量扩大为原来的两倍
		eType* newElements = new eType[newCapacity];
		for (int i = 0; i < list->size; i++) {
			newElements[i] = list->elements[i];
		}
		delete[] list->elements;//释放原来内存空间
		list->elements = newElements;
		list->capacity = newCapacity;
	}
	for (int i = list->size; i > index; i--) {
		list->elements[i] = list->elements[i - 1];
	}
	list->elements[index] = x;
	list->size++;//注意插入元素,长度加一
}

void deleteElement(SequentialTable* list, int index) {
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	if (list->size == 0) {//如果顺序表没有元素那么进行不了删除操作,抛出异常
		throw std::invalid_argument("Invalid index");
	}
	for (int i = index; i < list->size - 1; i++) {
		list->elements[i] = list->elements[i + 1];
	}
	list->size--;//长度减一
}

int findElement(SequentialTable* list, eType x) {//找出元素的索引
	for (int i = 0; i < list->size; i++) {
		if (x == list->elements[i])return i;
	}
	return -1;//找不到返回-1
}

eType getElement(SequentialTable* list, int index) {//返回索引对应的元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	return list->elements[index];
}

void updateElement(SequentialTable* list, int index, eType x) {//更新元素
	if (index < 0 || index >= list->size) {
		throw std::invalid_argument("Invalid index");
	}
	list->elements[index] = x;
}

int main() {//测试代码
	int n;
	while (cin >> n&&n) {
		SequentialTable s;
		initailizeTable(&s, 1);
		for (int i = 0; i < n; i++) {
			eType x;
			cin >> x;
			insertElement(&s, i, x);
		}
		int pcnt = 0, zcont = 0, ncnt = 0;
		for (int i = 0; i < s.size; i++) {
			eType val = getElement(&s, i);
			if (val > 1e-8) pcnt++;
			else if (val < -1e-8) ncnt++;
			else zcont++;
		}
		cout << ncnt << " " << zcont << " " << pcnt << endl;
	}
	
	return 0;
}

九、总结

综上所述,顺序表是一种基于数组实现的线性数据结构,具有随机访问速度快、物理存储连续等优点。然而,它也存在插入和删除操作效率低、扩容操作耗时等缺点。因此,在选择数据结构时,需要根据具体的应用场景和需求来权衡利弊。

结语

学习编程是一个很艰难,漫长的过程,我们要克服一切困难,学习算法本就是由易到难,不会的地方就问,我相信通过我们坚持不懈的努力一定能理解并熟练掌握其中细节,加油,我相信你一定能行。
在这里插入图片描述
想看更多内容可以关注我,看我作品,关注我让我们一起学习编程,希望大家能点赞关注支持一下,让我有持续更新的动力,谢谢大家。
在这里插入图片描述


http://www.kler.cn/a/385692.html

相关文章:

  • 从0开始机器学习--Day23--支持向量机
  • 云计算:定义、类型及对企业的影响
  • 万字长文解读深度学习——卷积神经网络CNN
  • C++20 概念与约束(1)—— SFINAE
  • js.零钱兑换
  • IDEA连接不同种类数据库
  • Pr 视频过渡:沉浸式视频 - VR 球形模糊
  • 音视频入门基础:FLV专题(23)——FFmpeg源码中,获取FLV文件音频信息的实现(下)
  • MySQL 和 PostgreSQL 常见区别和联系
  • 信息收集(CISP-PTE笔记)
  • qt5将程序打包并使用
  • 区间数位和
  • 抗辐照MCU芯片工艺解析:如何保障芯片的可靠性
  • 用户登录密码存储加密策略(附Python 和 bcrypt 库进行安全密码验证)
  • 【NLP】使用 SpaCy 通过 LLM 合成数据微调 NER 模型
  • 大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-2))(11/30)
  • 《应用力学学报》
  • PyTorch nn.Embedding() 嵌入层详解和要点提醒
  • CSS3中的3D变换(3D空间与景深、透视点的位置、3D位移、3D旋转、3D缩放、3D多重交换、背部可见性)
  • 移动取证和 Android 安全
  • TCP(传输控制协议)和UDP(用户数据报协议)
  • uniapp 小程序 周选择器
  • 【机器学习】平均绝对误差(MAE:Mean Absolute Error)
  • stm32cubeide 1.16.1 在ubuntu 24.04上的安装
  • Intern大模型训练营(五):书生大模型全链路开源体系笔记
  • Python代码主要实现了一个基于Transformer和LSTM的混合模型,用于对给定数据集进行二分类任务