当前位置: 首页 > article >正文

数据分析-38-时间序列分解之时变滤波器经验模态分解TVFEMD

文章目录

  • 1 时间序列模态分解
    • 1.1 模态分解的概念
    • 1.2 模态分解的作用
    • 1.3 常用的模态分解方法
    • 1.4 模态分解的常用库
  • 2 时变滤波器经验模态分解TVFEMD
    • 2.1 TVFEMD的流程
    • 2.2 加载数据集
      • 2.2.1 数据重采样
      • 2.2.2 原始数据可视化
    • 2.3 代码实现TVFEMD
  • 3 参考附录

1 时间序列模态分解

1.1 模态分解的概念

时间序列数据进行模态分解可以将数据分解成不同的模态或成分,有助于揭示数据中的趋势、季节性变化、周期性变化和随机变动,帮助我们更好地理解数据的特性和规律。通过模态分解,我们可以更清晰地识别出数据中的主要模态(趋势、季节性、周期性等),从而更好地进行数据预测、分析和建模。此外,模态分解也可以帮助我们剔除数据中的噪音,提高数据的质量和可解释性。因此,对时间序列数据进行模态分解可以帮助我们更好地理解数据的结构和变化规律,为后续的数据分析和应用提供更加可靠的基础。

模态分解在时间序列预测中有许多应用,下面是其中一些主要方面:
(1)提取趋势、季节性和周期性信息: 模态分解可以将时间序列数据分解成趋势、季节性和周期性等不同的成分,使得在预测过程中可以更好地考虑到这些因素的影响。这有助于建立更准确的预测模型,特别是对于具有明显季节性或周期性的数据。
(2)去除噪声: 模态分解可以帮助去除时间序列数据中的噪声成分,使得预测模型更加稳健和可靠。通过去除噪声,可以减少模型的误差,提高预测的准确性。
(3)特征提取&#


http://www.kler.cn/a/386309.html

相关文章:

  • C#语言详解:从基础到进阶
  • 基于yolov8、yolov5的鱼类检测识别系统(含UI界面、训练好的模型、Python代码、数据集)
  • 01:(手撸HAL+CubeMX)时钟篇
  • STM32问题集
  • LeetCode 86.分隔链表
  • Thread类及常见方法
  • 解决 “Error: listen EACCES: permission denied 0.0.0.0:80“ 错误
  • Linux·进程控制(system V)
  • 【鉴权】深入了解 Cookie:Web 开发中的客户端存储小数据
  • 使用PHP上传程序配置网页上的文件上传功能
  • 计算机图形学 实验二 三维模型读取与控制
  • 桥接IC lt7911d linux 驱动
  • UML统一建模语言,学习笔记
  • 【C#】用水平滚动条来设定参与运算的序列的长度
  • java 面向对象高级
  • sql之count()函数解析
  • 实战| 使用深度学习分割和计算水体和农田面积【Pytorch附源码】
  • Turtlebot3 buger 硬件与操作平台详细介绍
  • ProcessBuilder调用脚本执行
  • 简记Vue3(四)—— 路由
  • 代码随想录第二十五天
  • 减速机在工业机械中的核心作用!
  • 如何实现Delay_us和Delay_ms延时(SysTick定时器)
  • Flink安装和Flink CDC实现数据同步
  • 05 SQL炼金术:深入探索与实战优化
  • Docker平台搭建方法