当前位置: 首页 > article >正文

LeetCode34:在排序数组中查找元素第一个和最后一个位置

原题地址:. - 力扣(LeetCode)

题目描述

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

解题思路

  • 二分查找:我们使用二分查找来查找目标值的左边界和右边界。在给定的有序数组中,使用二分查找可以减少搜索范围,从而达到 O(log n) 的时间复杂度。

    • 左边界查找:我们在二分查找时,使用一个标志 lower 来指示我们是查找目标值的左边界还是右边界。
      • 如果 lower 为 true,则我们会在目标值的位置停止时继续往左移动,从而找到目标值的最左边位置。
      • 如果 lower 为 false,则我们会在目标值的位置停止时继续往右移动,直到目标值的右边界。
  • 返回结果:通过两次二分查找分别获取左边界和右边界的索引。如果左边界小于等于右边界,并且这两个位置上的值都等于目标值,则返回这两个索引;否则,返回 [-1, -1]

源码实现

class Solution {
    public int[] searchRange(int[] nums, int target) {
        // 1. 使用二分查找找到目标值的左边界(lower = true)
        int leftIdx = binarySearch(nums, target, true);
        // 2. 使用二分查找找到目标值的右边界(lower = false),然后减去 1 获取实际的右边界
        int rightIdx = binarySearch(nums, target, false) - 1;

        // 3. 检查左边界和右边界是否有效,且这两个位置上的值是否为目标值
        if (leftIdx <= rightIdx && rightIdx < nums.length && nums[leftIdx] == target && nums[rightIdx] == target) {
            // 4. 返回目标值的左边界和右边界
            return new int[]{leftIdx, rightIdx};
        } 
        // 5. 如果目标值不存在,返回 [-1, -1]
        return new int[]{-1, -1};
    }

    // 这里的 lower 参数用于控制是查找左边界(true)还是右边界(false)
    public int binarySearch(int[] nums, int target, boolean lower) {
        // 1. 初始化二分查找的左右边界
        int left = 0, right = nums.length - 1;
        // 2. 默认返回的答案是 nums.length,这样当目标值不存在时,能保证返回 [-1, -1]
        int ans = nums.length;

        while (left <= right) {
            int mid = (left + right) / 2;
            
            // 3. 根据目标值与中间值的比较来更新搜索范围
            // 4. 如果目标值小于中间值,或者是查找左边界时(lower = true)中间值大于等于目标值,
            // 则将搜索范围缩小到左半部分
            if (nums[mid] > target || (lower && nums[mid] >= target)) {
                right = mid - 1;
                ans = mid;
            } else {
                // 5. 如果目标值大于中间值,则搜索范围缩小到右半部分
                left = mid + 1;
            }
        }
        
        // 6. 返回找到的索引位置(若没有找到,则返回 nums.length)
        return ans;
    }
}

复杂度分析

  • 时间复杂度

    • 每次调用 binarySearch 都是 O(log n),其中 n 是数组的长度。
    • 在 searchRange 方法中,调用了两次 binarySearch,一次查找左边界,另一次查找右边界。因此总时间复杂度为 O(log n)
  • 空间复杂度

    • 该算法只使用了常量级的额外空间(除了返回结果数组),因此空间复杂度是 O(1)

http://www.kler.cn/a/386595.html

相关文章:

  • kubesphere环境-本地Harbor仓库+k8s集群(单master 多master)+Prometheus监控平台部署
  • Docker在CentOS上的安装与配置
  • 3588 yolov8 onnx 量化转 rknn 并运行
  • 微信小程序——01开发前的准备和开发工具
  • UAC2.0 speaker——同时支持 16bit,24bit 和 32bit
  • 浪潮信息“源”Embedding模型登顶MTEB榜单第一名
  • 创新引领,模块化微电网重塑能源格局
  • 使用开源Embedding模型嵌入高维空间向量
  • 设计模式之——单例模式
  • Golang--网络编程
  • 【专题】2024年全球生物医药交易报告汇总PDF洞察(附原数据表)
  • quartz
  • 【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】题库(4)
  • ReactNative中实现图片保存到手机相册
  • 3.PyCharm工具
  • virtualBox部署minikube+istio
  • Java项目实战II基于Java+Spring Boot+MySQL的高校办公室行政事务管理系统(源码+数据库+文档)
  • 速盾:vue的cdn是干嘛的?
  • Rust-AOP编程实战
  • vue2 -- el-form组件动态增减表单项及表单项验证
  • 关于我重生到21世纪学C语言这件事——三子棋游戏!
  • Java打造智能语音陪聊软件?提升用户体验的新路径
  • 【数据集】【YOLO】【目标检测】树木倒塌识别数据集 9957 张,YOLO道路树木断裂识别算法实战训练教程!
  • 让AI帮我用java实现EasyExel读取图片—支持WPS嵌入图片
  • python externally-managed-environment 外部管理环境
  • Kotlin 协程使用及其详解