当前位置: 首页 > article >正文

2024-11-5 学习人工智能的Day22 openCV(4)

face_recognition 介绍

face_recognition 是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。face_recognition 库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。

主要功能

  1. 人脸检测
    • 检测图像中的人脸位置。
    • 支持使用 HOG 特征或 CNN(卷积神经网络)进行人脸检测。
  2. 面部特征点定位
    • 检测人脸上的关键特征点(如眼睛、鼻子、嘴巴等)。
  3. 人脸识别
    • 提取人脸的特征向量(128维),并用于比较不同人脸之间的相似度。
    • 支持从图像或视频中识别特定的人脸。

它和opencv关系

face_recognition 和 OpenCV 是两个独立的计算机视觉库,但它们在功能上有一些重叠,并且经常一起使用来完成复杂的视觉任务。下面简要介绍两者的联系:

联系

尽管 face_recognition 和 OpenCV 各有侧重,但在实际应用中,它们经常被组合起来使用,以发挥各自的优势:

  • 图像预处理:通常情况下,我们会先使用 OpenCV 对图像进行预处理,比如调整大小、灰度化、去噪等。这些预处理步骤有助于提高后续人脸识别的准确率。
  • 人脸检测与识别:预处理后的图像可以传递给 face_recognition 库来执行人脸检测和识别。face_recognition 可以高效地完成这些任务,并返回人脸位置、面部特征点等信息。
  • 结果可视化:最后,我们可以再次利用 OpenCV 来对识别结果进行可视化处理,例如在图像上画出人脸框、标注识别到的名字等。

检测人脸

face_recognition.face_locations(img, number_of_times_to_upsample=1, model='hog')
  • 功能:检测图像中的人脸位置。
  • 参数
    • img:图像的 NumPy 数组。
    • number_of_times_to_upsample:图像上采样的次数,用于提高检测精度。
    • model:使用的模型,可以是 'hog'(默认)或 'cnn'
  • 返回:一个列表,每个元素是一个 (top, right, bottom, left) 的元组,表示人脸的位置
import face_recognition
import cv2
#加载图片
image = cv2.imread("../face_train_images/ldh.jpg")
#读取人脸位置
face_locations = face_recognition.face_locations(image)
print(face_locations)

for (top, right, bottom, left) in face_locations:
    # 画出人脸区域
    cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
# 显示结果
cv2.imshow("Detected Faces", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

切割人脸

import face_recognition
import cv2
#加载图片
image = cv2.imread("../face_train_images/ldh.jpg")
#读取人脸位置
face_locations = face_recognition.face_locations(image)
print(face_locations)

for (top, right, bottom, left) in face_locations:
    # 画出人脸区域
    cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
    qg_image = image[top:bottom,left:right]
# 显示结果
cv2.imshow("Detected Faces", qg_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

提取人脸特征

`face_recognition.face_encodings(img, known_face_locations=None, num_jitters=1, model='small')`
  • 功能:提取图像中人脸的特征向量。
  • 参数
    • img:图像的 NumPy 数组。
    • known_face_locations:人脸位置的列表,如果为 None,则自动检测人脸位置。
    • num_jitters:对每个人脸进行多次编码以提高精度。
    • model:使用的模型,可以是 'small''large'(默认)。
  • 返回:一个列表,每个元素是一个 128 维的特征向量。
import face_recognition
import cv2
#加载图片
image = cv2.imread("../face_train_images/ldh.jpg")
#读取人脸位置
face_locations = face_recognition.face_locations(image)
#提取人脸特征码
face_encodings = face_recognition.face_encodings(image)[0]
print(face_encodings)


计算人脸的欧几里得距离

import face_recognition
import cv2
import numpy as np
#加载图片
image1 = cv2.imread("../face_train_images/ldh.jpg")
#读取人脸位置
face_locations1 = face_recognition.face_locations(image1)
#提取人脸特征码
face_encodings1 = face_recognition.face_encodings(image1)[0]

#加载图片
image2 = cv2.imread("../face_train_images/4.jpg")
#读取人脸位置
face_locations2 = face_recognition.face_locations(image2)
#提取人脸特征码
face_encodings2 = face_recognition.face_encodings(image2)[0]

# 计算两个人脸编码之间的欧几里得距离。
distance = np.linalg.norm(face_encodings1 - face_encodings2)
print(distance)


欧几里得距离

​ 欧几里得距离(Euclidean distance)是一种测量两个点之间直线距离的方式,常用于数学、物理学和计算机科学中的各种应用,包括机器学习中的数据点距离计算。它是基于欧几里得几何的概念,通常用于计算空间中两点之间的距离。

应用

  • 数据分析: 欧几里得距离常用于计算数据点之间的距离,例如在聚类算法(如K均值聚类)中。
  • 计算机视觉: 在人脸识别等任务中,欧几里得距离用于计算特征向量之间的相似度。
  • 优化: 在路径规划和优化问题中,计算两点之间的欧几里得距离可以帮助寻找最短路径。

欧几里得距离的意义

  1. 距离越小,相似度越高
    • 特征向量相似:当欧几里得距离越小说明两个特征向量之间的差异越小,即这两个人脸在特征空间中很接近。因此,这两个图像可能是同一个人或者相似度很高。
    • 相同身份的概率大:在许多人脸识别系统中,如果计算出的距离小于某个设定的阈值,则系统会认为这两个面孔属于同一个人。
  2. 距离阈值
    • 匹配判断:通常,系统会设置一个阈值来判断两个特征向量是否属于同一身份。如果计算出的距离小于这个阈值,则认为两张图片中的人脸是相同的;如果距离大于阈值,则认为是不同的身份。
    • 误识别率:设置的阈值会影响系统的误识别率(假阳性和假阴性率)。距离阈值的选择需要根据具体应用场景进行调整。

计算人脸匹配程度

face_recognition.compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6)

  • 功能:比较已知人脸特征向量和待检测人脸特征向量,判断是否匹配。

  • 参数

    • known_face_encodings:已知人脸特征向量的列表。
    • face_encoding_to_check:待检测的人脸特征向量。
    • tolerance:匹配的阈值,范围是 0.0 到 1.0,值越小表示匹配要求越高。
  • 返回:一个布尔值列表,表示待检测人脸特征向量是否与已知人脸特征向量匹配

import face_recognition
import cv2
#提取已知人脸图片
known_image = image1 = cv2.imread("../face_train_images/ldh.jpg")
#提取提取已知人脸图片的人脸特征码
face_encodings1 = face_recognition.face_encodings(known_image)[0]
#提取未知人脸图片
unknown_image  = image1 = cv2.imread("../face_train_images/1.jpg")
#提取未知人脸图片的人脸特征码
face_encodings2 = face_recognition.face_encodings(unknown_image)
#计算是否匹配
results = face_recognition.compare_faces([face_encodings1], face_encodings2[0],tolerance=0.5)
print(results)


注意:

提取提取已知人脸图片的人脸特征码要获取下标未 0 的数值

提取未知人脸图片的人脸特征码 不获取小标

在计算匹配的时候传入到函数的参数,已知人脸图片的人脸特征码 获取放入到列表中,未知获取下标未0

图片预处理

如果对图片进行,

import face_recognition
import cv2
import numpy as np
#加载图片
image1 = cv2.imread("../face_train_images/ldh.jpg")
# 使用 OpenCV 进行图像预处理
gray_image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
#使用高斯滤波去除噪声
gs_img1 =cv2.GaussianBlur(gray_image1,(3,3),0)

image1 = cv2.cvtColor(gs_img1,cv2.COLOR_GRAY2BGR)
#读取人脸位置
face_locations1 = face_recognition.face_locations(image1)
#提取人脸特征码
face_encodings1 = face_recognition.face_encodings(image1)[0]

#加载图片
image2 = cv2.imread("../face_train_images/1.jpg")
# 使用 OpenCV 进行图像预处理
gray_image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
#使用高斯滤波去除噪声
gs_img2 =cv2.GaussianBlur(gray_image2,(3,3),0)

image2 = cv2.cvtColor(gs_img2,cv2.COLOR_GRAY2BGR)
#读取人脸位置
face_locations2 = face_recognition.face_locations(image2)
#提取人脸特征码
face_encodings2 = face_recognition.face_encodings(image2)[0]

# 计算两个人脸编码之间的欧几里得距离。
distance = np.linalg.norm(face_encodings1 - face_encodings2)
print(distance)
#




http://www.kler.cn/a/386731.html

相关文章:

  • vue3+elementplus+虚拟树el-tree-v2+多条件筛选过滤filter-method
  • react-redux useSelector钩子 学习样例 + 详细解析
  • 微信小程序的主体文件和页面文件介绍
  • makefile 设置动态库路径参数
  • JVM 中的完整 GC 流程
  • 前端请求后端php接口跨域 cors问题
  • 费舍尔信息矩阵 低秩矩阵 渐近正态性
  • 关键词研究与布局的重要性与实施策略
  • Python Matplotlib 如何绘制股票或金融数据图
  • 使用 PyTorch 实现并测试 AlexNet 模型,并使用 TensorRT 进行推理加速
  • springboot 之 接口数据脱敏
  • 淘淘商城实战高并发分布式项目(有源码)
  • 【死锁处理案例之一】
  • 硬件基础知识补全计划【七】MOS 晶体管
  • 【Docker】 常用命令
  • C++静态成员函数
  • 怎么更换IP地址 改变IP归属地的三种方法
  • 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
  • 关于c语言内存越界及防范措施
  • 如何优化Elasticsearch查询以提高性能?
  • 区块链技术入门:以太坊智能合约详解
  • 【linux】HTTPS 协议原理
  • 软件缺陷等级评定综述
  • asp.net framework从webform开始创建mvc项目
  • 2024江苏省网络建设与运维省赛Linux(十) mariadb 服务
  • 电信网关配置管理系统 upload_channels.php 文件上传致RCE漏洞复现