当前位置: 首页 > article >正文

【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!

数据集介绍

数据集道路事故识别数据集 8939 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:{'0': 'accident', '1': 'non-accident'}。数据集来自国内外图片网站和视频截图。检测范围道路事故检测监控视角检测、无人机视角检测、等,可用于智慧城市、智慧交通,服务于交通拥塞预警、交通安全排查

一、数据概述

道路事故识别的重要性

交通事故导致的人员伤亡和财产损失巨大,因此,提高交通管理的效率和安全性显得尤为重要。道路事故识别作为智能交通系统(ITS)的重要组成部分,能够实时监控交通状况,及时发现并处理交通事故,从而有效缩短紧急服务响应时间,减少交通阻塞,为事故分析和预防措施的制定提供数据支持。

道路事故识别面临诸多技术挑战,如光照条件变化、天气状况影响、交通标志和交通流复杂性等。这些因素都可能影响道路事故识别的准确性和实时性。因此,需要开发更加高效和鲁棒的目标检测算法来应对这些挑战。

基于YOLO的道路识别算法

基于YOLO的道路事故识别算法可以通过摄像头实时捕捉交通场景图像,并利用训练好的YOLO模型对图像进行目标检测。

该算法可以识别出车辆、行人等交通参与者,并判断是否存在交通事故。一旦检测到事故,算法可以立即发出警报,并自动记录事故发生的细节,包括事故类型、位置、时间以及涉及的车辆和行人信息。这些信息可以为交通管理部门提供重要的参考依据,帮助他们快速响应和处理交通事故。

该数据集含有8939张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试道路事故识别监控视角检测、无人机视角检测。图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

二、数据集文件结构

road_accident/

——Annotations/

——images/

——labels/

——data.yaml

Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件,包含道路事故识别的目标分类和加载路径。

三、数据集适用范围 

  • 目标检测场景
  • yolo训练模型或其他模型
  • 智慧城市、智慧交通
  • 道路事故检测监控视角检测、无人机视角检测、交通拥塞预警、交通安全排查

四、数据集标注结果 

​​​​​

​​

1、数据集内容 

  1. 多角度场景:包含行人视角、俯视视角、监控视角、无人机视角;
  2. 标注内容:names: ['accident', 'non-accident'],总计2个分类。
  3. 图片总量:8939张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

五、训练过程

1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

3、数据集格式化处理

这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['accident', 'non-accident'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

4、修改数据集配置文件

train: ../train/images
val: ../valid/images
test: ../test/images

nc: 2
names: ['accident', 'non-accident']

5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "道路积水"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

六、获取数据集 

戳我头像获取数据,或者主页私聊博主哈~

基于QT的目标检测可视化界面

一、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用说明

​​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 三、预测效果展示

1、图片检测

​​​​

切换置信度再次执行:

​​​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

2、视频检测 

​​​​

3、日志文本框

四、前端代码 

class MyWindow(QtWidgets.QMainWindow):
    def __init__(self):
        super().__init__()

        self.init_gui()
        self.model = None
        self.timer = QtCore.QTimer()
        self.timer1 = QtCore.QTimer()
        self.cap = None
        self.video = None
        self.file_path = None
        self.base_name = None
        self.timer1.timeout.connect(self.video_show)

    def init_gui(self):
        self.folder_path = "model_file"  # 自定义修改:设置文件夹路径
        self.setFixedSize(1300, 650)
        self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称
        self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标
        central_widget = QtWidgets.QWidget(self)
        self.setCentralWidget(central_widget)
        main_layout = QtWidgets.QVBoxLayout(central_widget)

        # 界面上半部分: 视频框
        topLayout = QtWidgets.QHBoxLayout()
        self.oriVideoLabel = QtWidgets.QLabel(self)
        
        # 界面下半部分: 输出框 和 按钮
        groupBox = QtWidgets.QGroupBox(self)
        groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')
        bottomLayout = QtWidgets.QHBoxLayout(groupBox)
        main_layout.addWidget(groupBox)
        btnLayout = QtWidgets.QHBoxLayout()
        btn1Layout = QtWidgets.QVBoxLayout()
        btn2Layout = QtWidgets.QVBoxLayout()
        btn3Layout = QtWidgets.QVBoxLayout()

        # 创建日志打印文本框
        self.outputField = QtWidgets.QTextBrowser()
        self.outputField.setFixedSize(530, 180)
        self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')
        self.detectlabel = QtWidgets.QLabel(self)
        self.oriVideoLabel.setFixedSize(530, 400)
        self.detectlabel.setFixedSize(530, 400)
        self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')
        self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')
        topLayout.addWidget(self.oriVideoLabel)
        topLayout.addWidget(self.detectlabel)
        main_layout.addLayout(topLayout)

五、代码获取

YOLO可视化界面

戳我头像获取数据,或者主页私聊博主哈~

注:以上均为原创内容,转载请私聊!!!


http://www.kler.cn/a/387393.html

相关文章:

  • 解决MySQL中整型字段条件判断禁用不生效的问题
  • 实现3D热力图
  • 异步提交Django
  • [CKS] Create/Read/Mount a Secret in K8S
  • 【论文复现】ChatGPT多模态命名实体识别
  • Ubuntu 20.04安装CUDA 11.0、cuDNN 8.0.5
  • js下载excel示例demo
  • Vue keep-alive 深度使用解读
  • 删除conda和 pip 缓存的包
  • 深度剖析RPC框架:为你的分布式应用找到最佳通信方式
  • 每天五分钟深度学习PyTorch:基于全连接神经网络完成手写字体识别
  • 深入Zookeeper节点操作:高级功能与最佳实践
  • IDA*算法 Power Calculus————poj 3134
  • 孔夫子的数字化宝库:用API解锁在售商品的秘密
  • 安装lua-nginx-module实现WAF功能
  • 瞬间对大模型与NLP的兴趣达到了1000000000%
  • 腾讯混元3D-1.0:文本到三维和图像到三维生成的统一框架
  • websphere CVE-2015-7450反序列化和弱口令,后台Getshell
  • 【赵渝强老师】Redis的AOF数据持久化
  • Spring——入门
  • MySQL 数据表常用编码类型解析
  • Java | Leetcode Java题解之第554题砖墙
  • 怎么把图片快速压缩变小?图片在线压缩的3款简单工具
  • 跨境访问难题?SD-WAN跨境加速专线加速电商社交媒体推广
  • 静态NAT和NAPT的区别
  • MySQL数据库专栏(四)MySQL数据库链接操作C#篇