当前位置: 首页 > article >正文

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

  • 《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)
    • 理解TCP和UDP
      • TCP/IP协议栈
      • TCP/IP协议的诞生背景
      • 链路层
      • 网络层
      • TCP/UDP层
      • 应用层
    • 实现基于TCP的服务端/客户端
      • 进入等待连接请求状态
      • 受理客户端连接请求
      • 回顾 Hello World 服务器端
      • TCP客户端的默认函数调用顺序
      • 客户端套接字地址信息
      • 回顾 Hello World 客户端
      • 基于TCP的服务器端/客户端函数调用关系
    • 实现迭代服务器端/客户端
      • 实现迭代服务器端
      • 迭代回声服务器端/客户端
        • echo_server.c
        • echo_client.c
      • 回声客户端存在的问题
    • 基于 Windows 的实现
      • 与 Linux 的区别
      • 基于 Windows 的回声服务器端
      • 基于 Windows 的回声客户端
      • 测试
    • 习题
      • (1)请说明TCP/IP的4层协议栈,并说明TCP和UDP套接字经过的层级结构差异。
      • (2)请说出TCP/IP协议栈中链路层和IP层的作用,并给出两者关系。
      • (3)为何需要把TCP/IP协议栈分成4层(或7层)?结合开放式系统回答
      • (4)客户端调用connect函数向服务器端发送连接请求。服务器端调用哪个函数后,客户端可以调用connect函数?
      • (5)什么时候创建连接请求等待队列?它有何作用?与accept有什么关系?
      • (6)客户端中为何不需要调用bind函数分配地址?如果不调用bind函数,那何时、如何向套接字分配IP地址和端口号?
      • 把第1章的hello_server.c和hello_server_win.c改成迭代服务器端,并利用客户端测试更改是否准确。

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

理解TCP和UDP

根据数据传输方式的不同,基于网络协议的套接字一般分为TCP套接字和UDP套接字。因为TCP套接字是面向连接的,因此又称为基于流(stream)的套接字。

TCP是Transmission Control Protocol(传输控制协议)的简写,意为“对数据传输过程的控制”。因此,学习控制方法及范围有助于正确理解TCP套接字。

TCP/IP协议栈

讲解TCP前先介绍TCP所属的TCP/IP协议栈(Stack,层),如图所示:

在这里插入图片描述

从上图可以看出,TCP/IP协议栈共分为四层,可以理解为数据收发分成了四个层次化过程。也就是说,面对“基于互联网的有效数据传输”的命题,并非通过一个庞大的协议解决问题,而是通过层次化方案——TCP/IP协议栈解决,通过TCP套接字收发数据需要借助四层,如图所示:

在这里插入图片描述

反之,通过UDP套接字收发数据时,利用下图的四层协议栈来完成:

在这里插入图片描述

各层可能通过操作系统等软件实现,也可能通过类似NIC的硬件设备实现。

TCP/IP协议的诞生背景

把“通过因特网完成有效数据传输”问题按照不同领域划分成小问题后,出现了多种协议,它们通过层级结构建立紧密联系。

把协议分成多个层次具有的优点:

  1. 协议设计更容易
  2. 为了通过标准化操作设计开放式系统

以多个标准为依据所设计的系统称为开放式系统,我们现在学习的TCP/IP协议栈也属于其中之一。那么开放式系统具有哪些优点呢?比方:路由器用来完成IP层交互任务,某公司原先使用A路由器,可将其替换成B路由器,即便A、B这两种路由器并非同一产商也可以顺利替换,因为所有的路由器生产产商都会按照IP层标准制造。再举个例子,大家的计算机一般都装有网卡(网络接口卡),即便没安装也没关系,网卡很容易买到,因为所有的网卡制造商都会遵守链路层的协议标准,这就是开放式系统的优点。

链路层

链路层是物理链接领域标准化的结果,也是最基本的领域,专门定义LAN、WAN、MAN等网络标准。若两台主机通过网络进行数据进行交换,则需要下图所示的物理连接,链路层就负责这些标准。

在这里插入图片描述

网络层

准备好物理连接后就要传输数据,为了在复杂的网络中传输数据,首先需要考虑路径的选择。向目标传输数据需要经过哪条路径?解决此问题就是IP层,该层使用的协议就是IP。IP本身是面向消息的、不可靠的协议。每次传输数据时会帮我们选择路径,但每次传输时的路径并不一致。如果传输中发生路径错误,则选择其他路径;但如果发生数据丢失或损坏,则无法解决。换言之,IP协议无法应对数据错误。

TCP/UDP层

IP层解决数据传输中的路径选择问题,只需照此路径传输数据即可。TCP和UDP层以IP层提供的路径信息为基础完成实际的数据传输,故该层又称传输层。UDP比TCP简单,我们后面还会在讨论,现在只解释TCP。TCP可以保证可靠的数据传输,但它发送数据时以IP层为基础,IP层是面向消息的,是不可靠的,那TCP又是如何保证消息的可靠传输呢?

IP层只关注一个数据包(数据传输的基本单位)的传输过程。因此,即使传输多个数据包,每个数据包也是由IP层实际传输的,也就是说传输顺序及传输本身都是不可靠的。若只利用IP层传输数据,则有可能后发送的数据包比早发生的数据包先到达目标主机。另外,传输的数据包A、B、C中可能只收到A和C,B可能丢失或接收到时已损坏。但若添加TCP协议则会按照如下图的方式进行数据传输:

在这里插入图片描述

我们可以看到,当主机A发送1号数据包给主机B时,必须等到主机B确认1号数据包接收成功,才会接着发送2号数据包,如果主机A发送1号数据包却迟迟收不到主机B回复的接收成功,则会认为是超时,并重新发送一个1号数据包。

应用层

数据传输路径、数据确认过程都被隐藏到套接字内部,只需利用套接字编出程序即可。编写软件过程中,需要根据程序特点决定服务器端和客户端之间的数据传输规定,这便是应用层协议。

网络编程的大部分内容就是设计并实现应用层协议。

实现基于TCP的服务端/客户端

下图给出了TCP服务器端默认的函数调用顺序,大部分TCP服务器端都按照该顺序调用。

在这里插入图片描述

调用socket函数创建套接字,声明并初始化地址信息结构体变量,调用bind函数向套接字分配地址。这两个阶段之前都讨论过了,下面讲解之后的几个过程。

进入等待连接请求状态

我们已调用bind函数给套接字分配了地址,接下来就要通过调用listen函数进入等待连接请求状态。只有调用了listen函数,服务端套接字才能进入可接收连接的状态,换言之,这时,客户端才能调用connect函数(若提前调用则会发生错误)。

#include <sys/socket.h>

int listen(int sockfd, int backlog);

成功时返回0,失败时返回-1。

参数:

  • sock:希望进入等待连接请求状态的套接字文件描述符,传递的描述符套接字参数成为服务端套接字(监听套接字)
  • backlog:连接请求等待队列(Queue)的长度,若为5,则队列长度为5,表示最多使5个连接请求进入队列

“服务器端处于等待连接请求状态”是指,客户端请求连接时,服务器端受理连接前一直处于等待状态,当有多个客户端一起发送连接请求时,服务器端套接字只能处理一个连接请求,而其他的连接请求,只能暂时放在请求队列。

在这里插入图片描述

客户端如果向服务器端询问:“请问我是否可以发起连接?”服务器端套接字就会亲切应答:“您好!当然可以,但系统正忙,请到等候室排号等待,准备好后会立即受理您的连接。”同时将连接请求请到等候室。调用listen函数即可生成这种门卫(服务器端套接字),listen函数的第二个参数决定了等候室的大小。等候室称为连接请求等待队列,准备好服务器端套接字和连接请求等待队列后,这种可接收连接请求的状态称为等待连接请求状态。

受理客户端连接请求

调用listen函数后,若有新的连接请求,则应按序受理。受理请求意味着进入可接收数据的状态,这里进入这种状态的所需部件当然还是套接字,可能有人会想使用服务器端套接字,但服务器端套接字已经用于监听,如果将其用于与客户端交换数据,那么谁来监听客户端的连接请求呢?因此需要另外一个套接字,但没必要亲自创建,accept函数将自动创建套接字,并连接到发起请求的客户端。

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

成功时返回创建的套接字文件描述符,失败时返回-1。

参数:

  • sock:服务器套接字的文件描述符
  • addr:保存发起连接请求的客户端地址信息的变量地址值,调用函数后向传递来的地址变量参数填充客户端地址信息
  • addrlen:第二个参数addr结构体的长度,但是存有长度的变量地址。函数调用完成后,该变量即被填入客户端地址长度

accept函数受理连接请求等待队列中待处理的客户端连接请求,函数调用成功时,accept函数内部将产生用于数据I/O的套接字,并返回其文件描述符。需要强调的是,套接字是自动创建的,并自动与发起连接请求的客户端建立连接。

在这里插入图片描述

回顾 Hello World 服务器端

这里,我们重新回顾第一章的hello_server.c。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
  
void error_handling(char *message);
  
int main(int argc, char *argv[])
{
    int serv_sock;
    int clnt_sock;
  
    struct sockaddr_in serv_addr;
    struct sockaddr_in clnt_addr;
    socklen_t clnt_addr_size;
  
    char message[] = "Hello world!";
  
    if (argc != 2)
    {
        printf("Usage: %s <port>\n", argv[0]);
        exit(1);
    }
  
    serv_sock = socket(AF_INET, SOCK_STREAM, 0);
    if (serv_sock == -1)
        error_handling("sock() error");
  
    memset(&serv_addr, 0, sizeof(serv_addr));
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_addr.sin_port = htons(atoi(argv[1]));
  
    if (bind(serv_sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
        error_handling("bind() error");
  
    if (listen(serv_sock, 5) == -1)
        error_handling("listen() error");
  
    clnt_addr_size = sizeof(clnt_addr);
    clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr, &clnt_addr_size);
    if (clnt_sock == -1)
        error_handling("accept() error");
  
    write(clnt_sock, message, sizeof(message));
    close(clnt_sock);
    close(serv_sock);
  
    return 0;
}
  
void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

第27行:服务器端实现过程中先要创建套接字,但此时的套接字尚未是真正的服务器端套接字

第31~37行:为了完成套接字地址分配,初始化结构体变量并调用bind函数

第39行:调用accept函数从队列的顶部取出一个连接请求与客户端建立连接,并返回创建的套接字文件描述符。另外,调用accept函数时若等待队列为空,则accept函数不会返回,直到队列中出现新的客户端连接

第47~49行:调用write函数向客户端传输数据,调用close函数关闭连接

TCP客户端的默认函数调用顺序

创建套接字和请求连接就是客户端的全部内容。

在这里插入图片描述

与服务器端相比,区别就在于“请求连接”,它是创建客户端套接字后向服务器端发起的连接请求。服务器端调用listen函数后创建连接请求等待队列,之后客户端即可请求连接。那如何发起连接请求呢?通过connect函数完成:

#include <sys/socket.h>

int connect(int sock_fd, struct sockaddr *serv_addr, socklen_t addrlen);

成功时返回0,失败时返回-1。

参数:

  • sock_fd:客户端套接字文件描述符
  • serv_addr:保存目标服务器端地址信息的变量地址值
  • addrlen:以字节为单位传递已传递给第二个结构体参数serv_addr的地址变量长度

客户端调用connect函数后,发生以下情况之一才会返回(完成函数调用):

  • 服务器端接收连接请求
  • 发生断网等异常情况而中断连接请求

需要注意,所谓的“接收连接”并不意味着服务器端调用accept函数,其实是服务器端把连接请求信息记录到等待队列,因此connect函数返回后并不立即进行数据交换。

客户端套接字地址信息

实现服务端必须给套接字分配IP地址和端口号,但客户端实现过程未出现,而是创建套接字后立即调用connect函数。网络数据交换必须分配IP和端口号,这是怎么回事呢?

客户端分配地址:

何时:调用connect函数时
何地:操作系统的内核中
如何:IP用计算机(主机)的IP,端口随机

客户端的IP地址和端口在调用connect函数时自动分配,无需调用标记的bind函数进行分配。

回顾 Hello World 客户端

这里,我们再回顾之前的hello_client.c。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
  
void error_handling(char *message);
  
int main(int argc, char *argv[])
{
    int sock;
    struct sockaddr_in serv_addr;
    char message[30];
    int str_len;
  
    if (argc != 3)
    {
        printf("Usage: %s <IP> <port>\n", argv[0]);
        exit(1);
    }
  
    sock = socket(AF_INET, SOCK_STREAM, 0);
    if (sock == -1)
        error_handling("sock() error");
  
    memset(&serv_addr, 0, sizeof(serv_addr));
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_addr.s_addr = inet_addr(argv[1]);
    serv_addr.sin_port = htons(atoi(argv[2]));
  
    if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
        error_handling("connect() error!");
  
    str_len = read(sock, message, sizeof(message) - 1);
    if (str_len == -1)
        error_handling("read() error!");
  
    printf("Message from server: %s\n", message);
    close(sock);
  
    return 0;
}
  
void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

第23行:创建准备连接服务器端的套接字,此时创建的是TCP套接字

第27~30行:结构体变量serv_addr中初始化IP和端口信息。初始化值为目标服务器端套接字的IP和端口信息

第32行:调用connect函数向服务器端发送连接请求

第35行:完成连接后,接收服务器端传输的数据

第40行:接收数据后调用close函数关闭套接字,结束与服务器端的连接

基于TCP的服务器端/客户端函数调用关系

前面讲解了TCP服务器端/客户端的实现顺序,实际上二者并非相互独立,让我们画一下它们之间的交互过程。

在这里插入图片描述

服务器端创建套接字后连续调用bind、listen函数进入等待状态,客户端通过调用connect函数发起连接请求,需要注意的是,客户端只能等到服务器端调用listen函数后才能调用connect函数。同时要清楚,客户端调用connect前,服务器端可能先调用了accept函数。当然,此时服务器端在调用accept函数时进入了阻塞状态,直到客户端调用connect函数为止。

实现迭代服务器端/客户端

回声服务器端/客户端:服务器端将客户端传输的字符串数据原封不动地传回客户端。

实现迭代服务器端

何为迭代服务器端?

设置好等待队列后,应向所有客户端提供服务,在受理完一个客户端请求连接后,还需要再受理其他的请求连接。

迭代服务器端的函数调用顺序:

在这里插入图片描述

从上图看出,调用accept函数后,紧接着调用I/O相关的read、write函数,然后调用close函数。这并非针对服务器端套接字,而是针对accept函数调用时所创建的套接字。

调用close函数就意味着结束了针对某一客户端的服务,此时如果还想服务于其他客户端,就要重新调用accept函数。

目前,我们的服务器端套接字同一时刻只能服务于一个客户端连接,将来学完进程和线程后,就可以编写同时服务多个客户端的服务器端了。

迭代回声服务器端/客户端

接下来创建迭代回声服务器端及与之配套的回声客户端,首先整理一下程序的基本运行方式:

  • 服务器端在同一时刻只与一个客户端相连,并提供回声服务
  • 服务器端依次向五个客户端提供服务并退出
  • 客户端接收用户输入的字符串并发送到服务器端
  • 服务器端将接收到的字符串回传给客户端,即“回声”
  • 服务器端与客户端之间的字符串回声一直执行到客户端输入Q为止
echo_server.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 1024
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int serv_sock, clnt_sock;
    char message[1024];
    int str_len, i;

    struct sockaddr_in serv_adr, clnt_adr;
    socklen_t clnt_adr_sz;

    if (argc != 2)
    {
        printf("Usage: %s <port>\n", argv[0]);
        exit(1);
    }
    serv_sock = socket(PF_INET, SOCK_STREAM, 0);
    if (serv_sock == -1)
        error_handling("socket() error");
    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_adr.sin_port = htons(atoi(argv[1]));
    if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1)
        error_handling("bind() error");
    if (listen(serv_sock, 5) == -1)
        error_handling("listen() error");
    clnt_adr_sz = sizeof(clnt_adr);
    for (i = 0; i < 5; i++)
    {
        clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &clnt_adr_sz);
        if (clnt_sock == -1)
            error_handling("accept() error");
        else
            printf("Connected client %d \n", i + 1);
        while ((str_len = read(clnt_sock, message, BUF_SIZE)) != 0)
            write(clnt_sock, message, str_len);
        close(clnt_sock);
    }
    close(serv_sock);

    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

第37~47行:为处理5个客户端连接而添加的循环语句。共调用五次accept函数,依次向五个客户端提供服务

第44、45行:实际完后回声服务的代码,原封不动地传输读取的字符串

第46行:针对连接客户端的套接字调用close函数,向连接的相应套接字发送EOF。换言之,客户端套接字若调用close函数,则第44行的循环条件变为false,因此执行第46行代码

第48行:向5个客户端提供服务后关闭服务器端套接字并终止程序

echo_client.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 1024
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int sock;
    char message[1024];
    int str_len;
    struct sockaddr_in serv_adr;
    if (argc != 3)
    {
        printf("Usage: %s <IP> <port>\n", argv[0]);
        exit(1);
    }
    sock = socket(PF_INET, SOCK_STREAM, 0);
    if (sock == -1)
        error_handling("socket() error");
    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = inet_addr(argv[1]);
    serv_adr.sin_port = htons(atoi(argv[2]));
    if (connect(sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1)
        error_handling("connect() error");
    else
        puts("Connected..........");
    while (1)
    {
        fputs("Input message(Q to quit):", stdout);
        fgets(message, BUF_SIZE, stdin);
        if (!strcmp(message, "q\n") || !strcmp(message, "Q\n"))
            break;
        write(sock, message, strlen(message));
        str_len = read(sock, message, BUF_SIZE - 1);
        message[str_len] = 0;
        printf("Message from server: %s", message);
    }
    close(sock);

    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

第29行:调用connect函数。若调用该函数引起的连接请求被注册到服务器端等待队列,则connect函数将完成正常调用。因此,即使通过第30行代码输出了连接提示字符串,如果服务器尚未调用accept函数,也不会真正建立服务关系

第44行:调用close函数向相应套接字发送EOF(EOF即意味着中断连接)

回声客户端存在的问题

下面是echo_client.c的代码:

        write(sock, message, strlen(message));
        str_len = read(sock, message, BUF_SIZE - 1);
        message[str_len] = 0;
        printf("Message from server: %s", message);

以上的代码有个错误假设:每次调用read、write函数时都会以字符串为单位执行实际的I/O操作。但是别忘了,TCP不存在数据边界。因此,多次调用write函数传递字符串有可能一次性传递到服务端,此时,客户端有可能从服务端收到多个字符串,这不是我们希望看到的结果

还要考虑另外一种情况:字符串太长,需要分两次数据包发送,客户端有可能在尚未收到全部数据包时就调用read函数。这些都是TCP特性的问题,我们将在下一章给出解决的办法。

朴素的解决方法:可以提前确定接收数据的大小。若之前传输了20字节长的字符串,则在接收时循环调用read函数读取20个字节。

基于 Windows 的实现

与 Linux 的区别

  • 通过 WSAStartup、WSACleanup 函数初始化并清除套接字相关库。
  • 数据类型和变量名切换为 Windows 风格。
  • 数据传输用 recv、send 函数而非 read、write 函数。
  • 关闭套接字时用 closesocket 函数而非 close 函数。

基于 Windows 的回声服务器端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#define BUF_SIZE 1024

void ErrorHanding(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[])
{
    WSADATA wsaData;
    SOCKET hServerSock, hClientSock;
    SOCKADDR_IN serverAddr, clientAddr;
    int clientAddrSize;
    char message[BUF_SIZE];
    int strLen;

    if (argc != 2)
    {
        printf("Usage: %s <port>\n", argv[0]);
        exit(1);
    }

    if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        ErrorHanding("WSAStartup() error!");

    hServerSock = socket(PF_INET, SOCK_STREAM, 0);
    if (hServerSock == INVALID_SOCKET)
        ErrorHanding("socket() error!");

    memset(&serverAddr, 0, sizeof(serverAddr));
    serverAddr.sin_family = AF_INET;
    serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
    serverAddr.sin_port = htons(atoi(argv[1]));

    if (bind(hServerSock, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)
        ErrorHanding("bind() error!");

    if (listen(hServerSock, 5) == SOCKET_ERROR)
        ErrorHanding("listen() error!");

    clientAddrSize = sizeof(clientAddr);
    for (int i = 0; i < 5; i++)
    {
        hClientSock = accept(hServerSock, (SOCKADDR *)&clientAddr, &clientAddrSize);
        if (hClientSock == INVALID_SOCKET)
            ErrorHanding("accept() error!");
        else
            printf("Connected client %d\n", i + 1);

        // echo
        while ((strLen = recv(hClientSock, message, BUF_SIZE, 0)) != 0)
            send(hClientSock, message, strLen, 0);

        closesocket(hClientSock);
    }

    closesocket(hServerSock);
    WSACleanup();

    return 0;
}

基于 Windows 的回声客户端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>

#define BUF_SIZE 1024

void ErrorHanding(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[])
{
    WSADATA wsaData;
    SOCKET hSocket;
    SOCKADDR_IN serverAddr;

    char message[BUF_SIZE];
    int strLen;

    if (argc != 3)
    {
        printf("Usage: %s <IP> <port>\n", argv[0]);
        exit(1);
    }

    if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        ErrorHanding("WSAStartup() error!");

    hSocket = socket(PF_INET, SOCK_STREAM, 0);
    if (hSocket == INVALID_SOCKET)
        ErrorHanding("hSocket() error!");

    memset(&serverAddr, 0, sizeof(serverAddr));
    serverAddr.sin_family = AF_INET;
    serverAddr.sin_addr.s_addr = inet_addr(argv[1]);
    serverAddr.sin_port = htons(atoi(argv[2]));

    if (connect(hSocket, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)
        ErrorHanding("connect() error!");
    else
        puts("Connected......");

    while (1)
    {
        fputs("Input message(Q to quit): ", stdout);
        fgets(message, BUF_SIZE, stdin);

        if (!strcmp(message, "q\n") || !strcmp(message, "Q\n"))
            break;

        send(hSocket, message, strlen(message), 0);
        strLen = recv(hSocket, message, BUF_SIZE - 1, 0);
        message[strLen] = '\0';
        printf("Message from server: %s\n", message);
    }

    closesocket(hSocket);
    WSACleanup();

    return 0;
}

测试

编译:

gcc echo_server_win.c -lwsock32 -o echo_server
gcc echo_client_win.c -lwsock32 -o echo_client

运行结果:

// 服务器端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>echo_server 9190
Connected client 1
Connected client 2
Connected client 3
Connected client 4
Connected client 5

// 客户端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>echo_client 127.0.0.1 9190
Input message(Q to quit): www
Message from server: www

Input message(Q to quit): never gonna
Message from server: never gonna

Input message(Q to quit): www
Message from server: www

习题

(1)请说明TCP/IP的4层协议栈,并说明TCP和UDP套接字经过的层级结构差异。

从高到低:应用层、传输层、网络层、数据链路层

  • TCP:链路层->IP层->TCP层->应用层
  • UDP:链路层->IP层->UDP层->应用层

(2)请说出TCP/IP协议栈中链路层和IP层的作用,并给出两者关系。

数据链路层通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。

网络层通过路由选择算法,为分组选择最适当的路径,实现两个端系统之间的数据透明传送。

数据链路层作为 IP 层的直接下层,向上提供数据传送服务。

(3)为何需要把TCP/IP协议栈分成4层(或7层)?结合开放式系统回答

开放式系统的研制经验表明,对于复杂的计算机网络协议,其结构应该是层次式的。

分层的好处:隔层之间是独立的,灵活性好,结构上可以分隔开,易于实现和维护,能促进标准化工作。

(4)客户端调用connect函数向服务器端发送连接请求。服务器端调用哪个函数后,客户端可以调用connect函数?

调用listen函数,设置好服务端监听套接字后。

(5)什么时候创建连接请求等待队列?它有何作用?与accept有什么关系?

调用listen函数时创建了连接请求等待队列。它是存储客户端连接请求信息的空间。accept函数调用后,将从连接请求队列中取出连接请求信息,并与相应客户端建立连接。

(6)客户端中为何不需要调用bind函数分配地址?如果不调用bind函数,那何时、如何向套接字分配IP地址和端口号?

客户端是请求连接的程序,不是一个接收连接的程序。所以,服务器的地址信息是更重要的因素,没有必要通过bind函数明确地分配地址信息。但是,要想和服务器通信,必须将自己的地址信息分配到套接字上,因此,在connect函数调用时,自动把IP地址和端口号输入到套接字上(IP用计算机(主机)的IP,端口随机)。

把第1章的hello_server.c和hello_server_win.c改成迭代服务器端,并利用客户端测试更改是否准确。

hello_echo_server.c:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

void error_handling(char *message);

int main(int argc, char *argv[])
{
    int serv_sock;
    int clnt_sock;

    struct sockaddr_in serv_addr;
    struct sockaddr_in clnt_addr;
    socklen_t clnt_addr_size;

    char message[] = "Hello World!";

    if (argc != 2)
    {
        printf("Usage : %s <port>\n", argv[0]);
        exit(1);
    }

    serv_sock = socket(PF_INET, SOCK_STREAM, 0);
    if (serv_sock == -1)
        error_handling("socket() error");

    memset(&serv_addr, 0, sizeof(serv_addr));
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_addr.sin_port = htons(atoi(argv[1]));

    if (bind(serv_sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
        error_handling("bind() error");

    if (listen(serv_sock, 5) == -1)
        error_handling("listen() error");

    clnt_addr_size = sizeof(clnt_addr);

    while (1)
    {
        clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr, &clnt_addr_size);
        if (clnt_sock == -1)
            break;

        write(clnt_sock, message, sizeof(message));
        close(clnt_sock);
    }
    close(serv_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

hello_echo_server_win.c:

#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>

void ErrorHanding(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[])
{
    WSADATA wsaData;
    SOCKET hServerSock, hClientSock;
    SOCKADDR_IN serverAddr, clientAddr;
    int szClientAddr;
    char message[] = "Hello World!";

    if (argc != 2)
    {
        printf("Usage: %s <port>\n", argv[0]);
        exit(1);
    }

    if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
        ErrorHanding("WSAStartup() 	error!");

    hServerSock = socket(PF_INET, SOCK_STREAM, 0);
    if (hServerSock == INVALID_SOCKET)
        ErrorHanding("socket() 	error!");

    memset(&serverAddr, 0, sizeof(serverAddr));
    serverAddr.sin_family = AF_INET;
    serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
    serverAddr.sin_port = htons(atoi(argv[1]));

    if (bind(hServerSock, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)
        ErrorHanding("bind() error!");

    if (listen(hServerSock, 5) == SOCKET_ERROR)
        ErrorHanding("listen() error!");

    szClientAddr = sizeof(clientAddr);
    while (1)
    {
        hClientSock = accept(hServerSock, (SOCKADDR *)&clientAddr, &szClientAddr);
        if (hClientSock == INVALID_SOCKET)
        {
            ErrorHanding("accept() error!");
            break;
        }

        send(hClientSock, message, sizeof(message), 0);

        closesocket(hClientSock);
    }
    
    closesocket(hServerSock);

    WSACleanup();

    return 0;
}

编译:

gcc hello_client_win.c -lwsock32 -o hClntWin
gcc hello_echo_server_win.c -lwsock32 -o hEchoServWin

测试:

// 服务器端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hEchoServWin 9190

// 客户端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!

C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!

C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!

C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!

C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>

结果正确,符合预期。


http://www.kler.cn/a/389316.html

相关文章:

  • Apache Hive 聚合函数与 OVER 窗口函数:从基础到高级应用
  • 【Java数据结构】排序
  • 目标跟踪算法发展简史
  • leetcode刷题记录(七十二)——146. LRU 缓存
  • C语言:位段
  • Git原理与应用(三)【远程操作 | 理解分布式 | 推送拉取远程仓库 | 标签管理】
  • 信息泄露漏洞一文速通
  • Facebook vs. Google:哪个更适合你的品牌
  • rabbitMq怎么保证消息不丢失?消费者没有接收到消息怎么处理
  • MySQL_聚合函数分组查询
  • 【神经科学学习笔记】基于分层嵌套谱分割(Nested Spectral Partition)模型分析大脑网络整合与分离的学习总结
  • 无人机手势控制工作原理和算法!
  • 【笔记】开关电源变压器设计 - 工作磁通的选择原则
  • 机器学习中的两种主要思路:数据驱动与模型驱动
  • Stable Diffusion WebUI或ComfyUI下载不了huggingface?修改huggingface为国内镜像地址方法在这里
  • 计算用户订购率梧桐数据库和oracle数据库sql分析
  • 关于elementui el-radio 赋值问题
  • Redis 高并发分布式锁实战
  • 基于vue框架的的社区人员信息管理系统4x9bn(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
  • 网络安全属性详解
  • 【Linux 28】应用层协议 - HTTPS
  • xtu oj 数字
  • pdf转excel;pdf中表格提取
  • Three.js 搭建3D隧道监测
  • 江西省补贴性线上职业技能培训管理平台(刷课系统)
  • HarmonyOS Next 实战卡片开发 02