当前位置: 首页 > article >正文

从0开始机器学习--Day16--神经网络作业

题目:构建逻辑回归模型来识别数字0-9

代码如下:

import numpy as np
from scipy.io import loadmat
import scipy.optimize as opt
from sklearn.metrics import classification_report

# 定义函数sigmoid,方便后续假设函数以sigmoid(z)表示
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 定义代价函数
def computeCost (theta, X, y, l=1 ):
    predictions = sigmoid(X @ theta)
    first = y * np.log(predictions)
    second = (1 - y) * np.log(1 - predictions)
    reg = theta[1:]@theta[1:]*(l/(2*len(X)))   #正则化项
    return -np.sum(first + second)/len(X) +reg  # 返回标量

def gradient(theta, X, y, l=1):
    reg = theta[1:] * (l/len(X))
    reg = np.insert(reg, 0, values=0, axis=0)
    first = (X.T@(sigmoid(X@theta)-y))/len(X)
    return first + reg

def one_vs_all(X, y, l=1, K = 10):
    n = X.shape[1]
    theta = np.zeros((K, n)) #创建与X的列数相同长度的0数组
    for i in range(1, K+1):
        theta_i = np.zeros(n, )

        res = opt.minimize(fun=computeCost,
                           x0=theta_i,
                           args=(X, y==i, l),
                           method='TNC',
                           jac=gradient)
        theta[i-1, :] = res.x

    return theta

def predict(X, theta):
    h = sigmoid(X@theta.T)
    h_argmax = np.argmax(h, axis=1)
    return h_argmax + 1


data = loadmat('ex3data1.mat')
raw_x = data['X']
raw_y = data['y']
X = np.insert(raw_x, 0, values=np.ones(raw_x.shape[0]), axis=1)
y = raw_y.flatten()
print(y.shape)
theta_all = one_vs_all(X, y, l=1, K=10)
print(theta_all)
y_pred = predict(X, theta_all)
acc = np.mean(y_pred == y)
print(acc)
print(classification_report(y, y_pred))

输出:

(5000,)
[[-2.38017165e+00  0.00000000e+00  0.00000000e+00 ...  1.30445260e-03
  -7.38340466e-10  0.00000000e+00]
 [-3.18105182e+00  0.00000000e+00  0.00000000e+00 ...  4.45068628e-03
  -5.07434671e-04  0.00000000e+00]
 [-4.79899590e+00  0.00000000e+00  0.00000000e+00 ... -2.86819678e-05
  -2.48325958e-07  0.00000000e+00]
 ...
 [-7.98439304e+00  0.00000000e+00  0.00000000e+00 ... -8.94750803e-05
   7.22839979e-06  0.00000000e+00]
 [-4.57041525e+00  0.00000000e+00  0.00000000e+00 ... -1.33611163e-03
   9.99192279e-05  0.00000000e+00]
 [-5.40239782e+00  0.00000000e+00  0.00000000e+00 ... -1.16450568e-04
   7.86669421e-06  0.00000000e+00]]
0.9446
              precision    recall  f1-score   support

           1       0.95      0.99      0.97       500
           2       0.95      0.92      0.93       500
           3       0.95      0.91      0.93       500
           4       0.95      0.95      0.95       500
           5       0.92      0.92      0.92       500
           6       0.97      0.98      0.97       500
           7       0.95      0.95      0.95       500
           8       0.93      0.92      0.92       500
           9       0.92      0.92      0.92       500
          10       0.97      0.99      0.98       500

    accuracy                           0.94      5000
   macro avg       0.94      0.94      0.94      5000
weighted avg       0.94      0.94      0.94      5000

用神经网络前向传播计算准确率代码:

from scipy.io import loadmat
import numpy as np
from sklearn.metrics import classification_report


def sigmoid(z):
    return 1 / (1 + np.exp(-z))

data = loadmat('ex3data1.mat')
raw_x = data['X']
raw_y = data['y']
X = np.insert(raw_x, 0, values=np.ones(raw_x.shape[0]), axis=1)
y = raw_y.flatten()
print(y.shape)
theta = loadmat('ex3weights.mat')
theta1 = theta['Theta1']
theta2 = theta['Theta2']

a1 = X
z2 = X@theta1.T
a2 = sigmoid(z2)
a2 = np.insert(a2, 0, values=1, axis=1)
z3 = a2@theta2.T
a3 = sigmoid(z3)
y_pred = np.argmax(a3, axis=1) + 1
acc = np.mean(y_pred == y)
print(acc)
print(classification_report(y, y_pred))

输出:

(5000,)
0.9752
              precision    recall  f1-score   support

           1       0.97      0.98      0.98       500
           2       0.98      0.97      0.98       500
           3       0.98      0.96      0.97       500
           4       0.97      0.97      0.97       500
           5       0.97      0.98      0.98       500
           6       0.98      0.99      0.98       500
           7       0.98      0.97      0.97       500
           8       0.98      0.98      0.98       500
           9       0.97      0.96      0.96       500
          10       0.98      0.99      0.99       500

    accuracy                           0.98      5000
   macro avg       0.98      0.98      0.98      5000
weighted avg       0.98      0.98      0.98      5000

总结:在构建多元分类的模型中,方法就是将其转化为二元分类,再做循环计算,这样每次只需要将本身看做为0或1即可,注意其每次循环时要取概率最高的那次才有意义。用神经网络时,其结果有点过于理想了,怀疑是出现了过拟合现象。

视频订正参考:【作业讲解】编程作业3:神经网络(上)_哔哩哔哩_bilibili


http://www.kler.cn/a/389973.html

相关文章:

  • MarsCode青训营打卡Day1(2025年1月14日)|稀土掘金-16.最大矩形面积问题
  • PyTorch 神经协同过滤 (NCF) 推荐系统教程
  • ASP.NET Core WebApi接口IP限流实践技术指南
  • 回归预测 | MATLAB实SVM支持向量机多输入单输出回归预测
  • FFmpeg硬件解码
  • MySQL NaviCat 安装及配置教程(Windows)【安装】
  • uni-app文章列表制作⑧
  • 经典网络模型
  • 双指针(二)双指针到底是怎么个事
  • 图书管理系统(Java实现)
  • 低代码平台总览
  • C# 委托与匿名方法
  • css中的变量使用
  • kafka分区中的ISR、OSR、AR 是什么?
  • Flink使用SQL Gateway提交SQL Job到远程集群
  • 【单例模式】饿汉式与懒汉式以及线程安全
  • 大数据技术在金融风控中的应用
  • 我的生活记(dz-cn)
  • 【CentOS】中的Firewalld:全面介绍与实战应用(下)
  • 论文阅读分享:基于弱监督的病理图像腺体分割
  • 现代Web开发:WebSocket 实时通信详解
  • C语言命令行参数解析:getopt函数实战指南及高级应用解析
  • mysql5常用命令(一)
  • centos7 arm版本编译qt5.6.3详细说明
  • 图形几何之美系列:仿射变换矩阵之先转后偏
  • QtLua