当前位置: 首页 > article >正文

【MATLAB源码-第291期】基于matlab的AMI编码解码系统仿真,输出各个节点波形。

操作环境:

MATLAB 2022a

1、算法描述

AMI(Alternate Mark Inversion,交替极性反转)是一种广泛使用的编码方法,尤其是在通信系统中,用于传输二进制数据。AMI编码的特点是在传输过程中,对于0信号使用相同的电平,而对于1信号则交替使用不同的电平。它通过避免长时间的直流分量来提高信号的抗干扰能力,减少了直流漂移的影响,从而使信号的频谱特性更加有利于传输。下面我将系统地介绍AMI编码和解码的过程。

首先,AMI编码是通过对每个输入的二进制比特进行转换而得到的。在AMI编码中,对于输入信号中的每一个“1”,都会对应一个不同的电平,通常是交替的+1和-1;而对于“0”信号,则保持在0电平。例如,如果输入的比特流为 1 0 1 1 0,则经过AMI编码后的信号将会是 +1 0 -1 +1 0。这种编码方式通过确保每个连续的1之间有不同的极性,有效地避免了直流分量的积累。

在通信系统中,AMI编码后的信号通常是通过脉冲信号的方式进行传输的,这些脉冲信号是经过基带处理的。AMI信号通常具有矩形脉冲的形状,并且每个脉冲持续一个码元周期。为了能够适应现代通信系统的要求,AMI编码后的信号往往会进行采样,以适应更高的系统带宽。

在上述代码中,首先是生成了一个随机的二进制码流,作为输入信号。然后,代码通过AMI编码将原始的二进制流转换成交替的极性信号。具体来说,对于二进制流中的每一个“1”,代码生成了一个+1或-1的极性,而“0”则映射为0。这一过程的目的是为了解决直流分量的问题,确保在解码时能够准确地恢复出原始的二进制数据。

一旦完成了AMI编码,接下来的步骤是对信号进行采样,并将采样后的信号用于模拟传输过程。通常在实际的通信系统中,信号需要经过信道传输,而信道可能会引入噪声。在代码中,AMI编码后的信号通过高斯白噪声信道进行传输。为了模拟这种传输过程,代码使用了 awgn 函数,它向信号中添加了一个SNR为20dB的噪声,这样就得到了一个噪声污染后的信号。

在信号通过噪声信道传输之后,我们需要进行解码以恢复出原始的二进制数据。解码过程的关键在于如何从噪声信号中提取出正确的比特值。在代码中,首先使用低通滤波器对接收到的信号进行滤波,以去除高频噪声成分。低通滤波器的设计采用了FIR滤波器,通过设置适当的截止频率(通常为信号的码元速率)来确保信号的低频成分得到保留。

经过滤波后的信号将会有一个平滑的波形,接下来,我们需要进行抽样判决。在AMI编码中,每个比特对应一个符号,我们可以通过检测信号在每个码元的中间时刻的值来判断该符号是0还是1。在代码中,使用了一个阈值判决方法:如果滤波后的信号值大于0,则判定为1;如果信号值小于等于0,则判定为0。这一步的结果是得到一个二进制流,它代表了经过AMI编码后的原始数据。

总体来说,AMI编码的关键在于通过交替极性反转避免直流分量,从而提高信号的抗干扰性。AMI解码过程的关键步骤包括滤波、抽样判决和信号恢复。通过这一过程,通信系统能够在噪声环境中准确地恢复出原始数据,并进行后续的信号处理。

2、仿真结果演示

3、关键代码展示

lue

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取


http://www.kler.cn/a/390987.html

相关文章:

  • 普通电脑上安装属于自己的Llama 3 大模型和对话客户端
  • ❤React-JSX语法认识和使用
  • 【前端】JavaScript高级教程:线程机制与事件机制
  • Flink API 的层次结构
  • 大数据新视界 -- 大数据大厂之 Impala 性能优化:优化数据加载的实战技巧(下)(16/30)
  • 【ARM Coresight OpenOCD 系列 5 -- arp_examine 使用介绍】
  • XML 现实案例:深入解析与应用
  • 斯坦福泡茶机器人DexCap源码解析:涵盖收集数据、处理数据、模型训练三大阶段
  • 【动手学电机驱动】STM32-FOC(5)基于 IHM03 的无感 FOC 控制
  • 【Chrono Engine学习总结】5-sensor-5.3-LiDAR扫描顺序、时间戳计算与去畸变
  • AttriPrompter:基于属性语义的自动提示,用于通过视觉-语言预训练模型实现零样本细胞核检测|文献速递-基于深度学习的病灶分割与数据超分辨率
  • 【JavaEE初阶】多线程上部
  • 使用wordpress搭建简易的信息查询系统
  • 实现 think/queue 日志分离
  • Redhat8.6通过rpm安装RabbitMQ
  • 分段式爬虫和数据采集有什么关系
  • EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
  • easyexcel实现自定义的策略类, 最后追加错误提示列, 自适应列宽,自动合并重复单元格, 美化表头
  • Java 类加载机制详解
  • ssm088基于JAVA的汽车售票网站abo+vue(论文+源码)_kaic
  • 多维视角下的知识管理:Spring Boot应用
  • Python 网络编程指南(初学者版)
  • Unity类银河战士恶魔城学习总结(P118 Thunder Strike On Ability 制作一把带有雷电效果的项链)
  • Ubuntu20.04 安装build-essential问题
  • 丹摩征文活动 | 轻松上手图像生成:FLUX.1遇上ComfyUI,让复杂变简单!
  • 小程序与 H5 的交互