当前位置: 首页 > article >正文

Flink转换算子

Apache Flink 是一个用于处理无界和有界数据的开源流处理框架。在 Flink 中,转换(Transformation)是数据流处理的核心组件之一,它们定义了如何从输入数据集生成输出数据集。以下是 Flink 中一些常见的转换算子:

  1. Map: 将每个元素转换为另一个元素。通常用于一对一的数据转换

    DataStream<Integer> input = ...;
    DataStream<Integer> result = input.map(new MapFunction<Integer, Integer>() {
        @Override
        public Integer map(Integer value) throws Exception {
            return value * 2;
        }
    });
  2. FlatMap: 类似于 Map,但是可以产生多个输出元素

    DataStream<String> input = ...;
    DataStream<String> result = input.flatMap(new FlatMapFunction<String, String>() {
        @Override
        public void flatMap(String value, Collector<String> out) throws Exception {
            for (String word : value.split(" ")) {
                out.collect(word);
            }
        }
    });
  3. Filter: 过滤掉不符合条件的元素。

    DataStream<Integer> input = ...;
    DataStream<Integer> result = input.filter(new FilterFunction<Integer>() {
        @Override
        public boolean filter(Integer value) throws Exception {
            return value > 5;
        }
    });
  4. KeyBy: 对数据流进行分组,以便后续操作(如窗口操作)能够按特定键处理数据。

    DataStream<Tuple2<String, Integer>> input = ...;
    KeyedStream<Tuple2<String, Integer>, String> keyed = input.keyBy(0);
  5. Reduce: 在每个分组内聚合元素,可以是滚动聚合或窗口内的聚合。

    DataStream<Integer> input = ...;
    DataStream<Integer> result = input.reduce(new ReduceFunction<Integer>() {
        @Override
        public Integer reduce(Integer value1, Integer value2) throws Exception {
            return value1 + value2;
        }
    });
  6. Window: 定义窗口以对无界流中的数据进行分批处理。

    DataStream<Integer> input = ...;
    DataStream<Integer> result = input
        .keyBy((key) -> key)
        .timeWindow(Time.seconds(5))
        .reduce(new ReduceFunction<Integer>() {
            @Override
            public Integer reduce(Integer value1, Integer value2) throws Exception {
                return value1 + value2;
            }
        });
  7. Union: 合并两个或更多数据流。

    DataStream<Integer> stream1 = ...;
    DataStream<Integer> stream2 = ...;
    DataStream<Integer> result = stream1.union(stream2);
  8. Connect: 连接两个不同类型的流,但不会将它们合并成一个流。

    DataStream<Integer> stream1 = ...;
    DataStream<String> stream2 = ...;
    ConnectedStreams<Integer, String> connectedStreams = stream1.connect(stream2);
  9. Broadcast: 广播一个数据流到所有任务实例中。

    DataStream<Integer> input = ...;
    BroadcastStream<Integer> broadcastStream = input.broadcast();

这些只是 Flink 提供的一些基本转换算子。Flink 还支持更复杂的转换,例如通过 ProcessFunction 实现自定义逻辑,以及与其他外部系统的集成等高级特性。


  1. Map

    • 作用:将每个元素转换为另一个元素。
    • 示例:将每个整数乘以2。
    • 输入1, 2, 3, 4, 5
    • 输出2, 4, 6, 8, 10
  2. FlatMap

    • 作用:将每个元素转换为零个、一个或多个元素。
    • 示例:将每个字符串拆分成单词。
    • 输入"hello world", "flink is great"
    • 输出"hello", "world", "flink", "is", "great"
  3. Filter

    • 作用:过滤掉不符合条件的元素。
    • 示例:过滤出大于5的整数。
    • 输入1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • 输出6, 7, 8, 9, 10
  4. KeyBy

    • 作用:根据指定的键对数据流进行分组,以便后续操作(如窗口操作)能够按特定键处理数据。
    • 示例按元组的第一个元素分组
    • 输入(a, 1), (b, 2), (a, 3), (b, 4)
    • 输出:分组后的数据流,按第一个元素分组。
  5. Reduce

    • 作用:在每个分组内聚合元素,可以是滚动聚合或窗口内的聚合。
    • 示例:在每个分组内将整数相加
    • 输入(a, 1), (b, 2), (a, 3), (b, 4)
    • 输出(a, 4), (b, 6)
  6. Window

    • 作用:定义窗口以对无界流中的数据进行分批处理。
    • 示例:定义一个5秒的时间窗口,在每个窗口内将整数相加。
    • 输入1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • 输出:窗口内的聚合结果,例如 15, 25, 35, ...
  7. Union

    • 作用:合并两个或更多数据流。
    • 示例:合并两个包含整数的数据流。
    • 输入stream1: 1, 2, 3stream2: 4, 5, 6
    • 输出1, 2, 3, 4, 5, 6
  8. Connect

    • 作用:连接两个不同类型的流,但不会将它们合并成一个流。
    • 示例:连接一个整数流和一个字符串流。
    • 输入stream1: 1, 2, 3stream2: "a", "b", "c"
    • 输出ConnectedStreams<Integer, String>
  9. Broadcast

    • 作用:广播一个数据流到所有任务实例中。
    • 示例:广播一个包含配置参数的数据流。
    • 输入1, 2, 3
    • 输出:每个任务实例都收到 1, 2, 3

http://www.kler.cn/a/391564.html

相关文章:

  • 《MYSQL45讲》kill不掉的线程
  • SpringBoot(八)使用AES库对字符串进行加密解密
  • 【教程】华南理工大学国际校区宿舍门锁声音设置
  • git之 revert和rebase
  • 【Playwright + Python】系列(十)利用 Playwright 完美处理 Dialogs 对话框
  • C# 集合与泛型
  • CSM32RV20:RISC-V核的低功耗MCU芯片,常用在智能门锁上
  • C++中级学习笔记
  • TortoiseSVN提示服务器凭证检核错误:站点名称不符
  • windows下QT5.12.11使用MSVC编译器编译mysql驱动并使用详解
  • STM32学习笔记------GPIO介绍
  • SpringCloudAlibabaSidecar整合异构微服务
  • ES6模块、CommonJS、AMD等不同的模块化实现。
  • npm i 的时候报错: npm ERR! Error: EPERM: operation not permitted, rename
  • 已解决:spark代码中sqlContext.createDataframe空指针异常
  • 优化Mac的鼠标使用体验超简单方法
  • C++零基础趣味学信息学奥赛系列课程简介
  • 科技云报到:数字化转型,从不确定性到确定性的关键路径
  • Java的六大排序
  • react-router-dom 库作用
  • C++知识回顾
  • 游戏之地图找怪进行PK升级。C++
  • hive alter table add columns 是否使用 cascade 的方案
  • Linux后台运行jar包,nohup、>、
  • 源码解析-Spring Eureka
  • Qt 获取当前系统中连接的所有USB设备的信息 lsusb版