当前位置: 首页 > article >正文

丹摩征文活动 |通过Pycharm复现命名实体识别模型--MECT模型

文章目录

  • 🍋1 引言
  • 🍋2 平台优势
  • 🍋3 丹摩平台服务器配置教程
  • 🍋4 实操案例( MECT4CNER-main)
    • 🍋4.1 MECT4CNER-main模型
    • 🍋4.2 环境配置
    • 🍋4.3 训练模型
    • 🍋4.4 数据保存并导出
  • 🍋5 结语

🍋1 引言

DAMODEL(丹摩智算)是专为 AI 打造的智算云,致力于提供丰富的算力资源与基础设施助力 AI 应用的开发、训练、部署。
在这里插入图片描述

🍋2 平台优势

  • 💡 超友好!

配备 124G 大内存和 100G 大空间系统盘,一键部署,三秒启动,让 AI 开发从未如此简单!

  • 💡 资源多!

从入门级到专业级 GPU 全覆盖,无论初级开发还是高阶应用,你的需求,我们统统 Cover!

  • 💡 性能强!

自建 IDC,全新 GPU,每一位开发者都能体验到顶级的计算性能和专属服务,大平台值得信赖!

  • 💡 超实惠!

超低价格体验优质算力服务,注册即送优惠券!还有各类社区优惠活动,羊毛薅不停!

🍋3 丹摩平台服务器配置教程

进入控制台-GPU云实例,点击「创建实例」可以快速查看目前提供的算力型号和规格,对于经过跑模型的老用户根据自己实际情况进行选择即可,对于我们新用户来说,必须选最好的4090!!!
在这里插入图片描述
在创建GPU云容器页面您可以:

  • 选择计费方式:按量计费、包日、包月
  • 选择合适的配置与主机
  • 选择GPU数量
  • 扩容数据盘
  • 选择镜像
  • 选择密钥对
  • 选择完成后即可付费创建云容器

对此官方还贴心的出了一个注意事项

在这里插入图片描述

🍋4 实操案例( MECT4CNER-main)

根据上次的镜像我们保持不变,具体创建实例可以参考上篇博客丹摩征文活动 | 0基础带你上手经典目标检测模型 Faster-Rcnn

🍋4.1 MECT4CNER-main模型

下面是原文链接,在GitHub仓库,感兴趣的读者可以自行下载
https://github.com/CoderMusou/MECT4CNER
这个模型的出处来自ACL2021年的一篇文章感兴趣的读者也可以自行下载并且阅读
Models and results can be found at our paper in ACL 2021 or arXiv.

下面是数据集目录
在这里插入图片描述

🍋4.2 环境配置

安装完Pycharm之后,我们点击File—》settings
在这里插入图片描述

接下来我们选择第二个
在这里插入图片描述
接下来我们复制访问链接和密码

在这里插入图片描述
这里根据格式填写访问链接

这里填写密码
在这里插入图片描述
这样就是成功连接上了

在这里插入图片描述
接下来我们选择解释器

在这里插入图片描述
接下来我们根据目录找到Python解释器,之后就点击OK就可以了

在这里插入图片描述

接下来我们就需要进行等待上传文件了
在这里插入图片描述

我们需要一些时间进行等待,若上传完毕,可以通过下面的代码找到我们的工程文件夹

在这里插入图片描述

🍋4.3 训练模型

接下来我们需要将需要的一些库都安装好

fitlog==0.3.2
torch==1.5.1+cu101
FastNLP==0.5.0
numpy==1.18.5

安装完毕,我们直接在终端输入

时间关系本文不具体展示训练过程,下面是训练的命令语句,感兴趣的读者或者对命名实体识别感兴趣的读者可以自行训练

Python main.py

接下来就可以复现代码了

🍋4.4 数据保存并导出

代码中存在可以保存日志的相关代码,训练的日志会直接保存到logs文件夹中去
在这里插入图片描述

🍋5 结语

平台优势:

  1. 价格实惠,注册送福利
  2. 界面简洁,不花里胡哨
  3. 售后优质,及时有反馈
  4. 性能强大,4090带你飞

通过 DAMODEL 智算云的便捷服务,我们体验到了一种全新的开发与部署方式——从资源配置、环境搭建、模型训练到结果导出,每一步都得到了高效的支持。这里我们采用经典目标检测模型 Faster-Rcnn进行测试,后续我还将会使用不同的模型进行测试,欢迎关注~

挑战与创造都是很痛苦的,但是很充实。


http://www.kler.cn/a/393277.html

相关文章:

  • 【自用】0-1背包问题与完全背包问题的Java实现
  • Window下PHP安装最新sg11(php5.3-php8.3)
  • 密码学的基本原理
  • 【OceanBase 诊断调优】—— ocp上针对OB租户CPU消耗计算逻辑
  • 使用elementUI实现表格行拖拽改变顺序,无需引入外部库
  • WebRTC API分析
  • JS 实现SSE通讯和了解SSE通讯
  • AI大模型识别多人发音的实时语音交互理论研究
  • Logback 日志介绍及与Spring Boot 的整合 【保姆级教程】
  • 数据库基础(11) . SQL脚本
  • 在arm64架构下, Ubuntu 18.04.5 LTS 用命令安装和卸载qt4、qt5
  • golang将word、excel转换为pdf
  • JAVA:探索 EasyExcel 的技术指南
  • 哈希表的实现--C++
  • 【Redis】Redis的一些应用场景及使用策略
  • Android Studio使用c++编写
  • MATLAB和R及Python伪时间分析
  • 泷羽sec学习打卡-Linux基础2
  • Webpack 1.13.2 执行 shell 命令解决 打印时没有背景色和文字颜色的问题
  • 【云计算解决方案面试整理】3-7主流云计算平台、云计算架构、安全防护
  • ubuntu内核切换network unclaimed 网卡丢失
  • nginx配置负载均衡详解
  • 【聚类】Kmeans聚类方法概述及其MATLAB实现
  • 前端单元测试框架 引入说明
  • SpringBoot(四)配置拦截器、filter、跨域
  • Day41 | 动态规划 :完全背包应用 完全平方数单词拆分(类比爬楼梯)