基于Affine-Sift算法的图像配准matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1 SIFT 算法原理
4.2 Affine算法原理
4.3 Affine-SIFT算法原理
5.算法完整程序工程
1.算法运行效果图预览
(完整程序运行后无水印)
Affine-Sift算法
Sift算法
2.算法运行软件版本
MATLAB2022A
3.部分核心程序
(完整版代码包含操作步骤视频)
.........................................................................
figure;
subplot(121);imshow(img1s);title('原始图片1');
subplot(122);imshow(img2s);title('原始图片2');
%计算图片的大小
[m1,n1] = size(img1s);
[m2,n2] = size(img2s);
%对两个图片分别进行角度选择和不同角度的特征提取
if sel == 1
tic;
disp('对图片1进行处理');
[Hrl_feature1,Hr_pointl_feature1,cnt1]=func_sift_angle(img1s,m1,n1,t);
Time = toc;
disp('对图片2进行处理');
[Hrl_feature2,Hr_pointl_feature2,cnt2]=func_sift_angle(img2s,m2,n2,t);
save feature_data_B1.mat Hrl_feature1 Hr_pointl_feature1 Hrl_feature2 Hr_pointl_feature2 cnt1 cnt2 Time
else
load feature_data_B1.mat
end
%进行配准
pp = 0;
level = 0.6;
image_match1 = [];
image_match2 = [];
for i = 1:(cnt1 - 1)
for j = 1:(cnt2 -1)
pp = pp + 1;
fprintf('处理进度:');fprintf('%3.2f',100*pp/(cnt1*cnt2));fprintf('%%\n\n');
NF1(i) = size(Hrl_feature1{i},1);
NF2(j) = size(Hrl_feature2{j},1);
same_feature = func_feature_match(Hrl_feature1{i},Hrl_feature2{j},level);
ind1 = find(same_feature);
ind2 = same_feature(ind1);
%根据门限来选择一定区域内的配准点
ind = find(sqrt(sum(((Hrl_feature1{i}(ind1,:)-Hrl_feature2{j}(ind2,:)).^2),2)) <= level);
ind1 = ind1(ind);
ind2 = ind2(ind);
Match1Tmp = Hr_pointl_feature1{i}(ind1,[ 1 2 3 end ]);
Match2Tmp = Hr_pointl_feature2{j}(ind2,[ 1 2 3 end ]);
image_match1 = [image_match1;Match1Tmp];
image_match2 = [image_match2;Match2Tmp];
end
end
close all;
%显示最后处理的效果
[LineCoordX,LineCoordY,N] = func_figure(img1s,image_match1,img2s,image_match2,Feature_point);
009_042m
4.算法理论概述
图像配准是计算机视觉和图像处理领域中的一个重要任务,它的目的是将不同时间、不同视角或者不同传感器获取的同一场景的图像进行几何对准。Affine - Sift 算法结合了仿射变换(Affine Transformation)和尺度不变特征变换(Scale - Invariant Feature Transform,SIFT)的优点,能够有效地处理图像之间的旋转、缩放、平移以及仿射变换等复杂的几何变换关系,从而实现高精度的图像配准。
4.1 SIFT 算法原理
4.2 Affine算法原理
4.3 Affine-SIFT算法原理
首先在待配准的两幅图像(源图像和目标图像)上分别运行 SIFT 算法,提取出特征点及其特征描述符。
5.算法完整程序工程
OOOOO
OOO
O