红黑树
目录
红黑树
红黑树的概念
红黑树的性质
红黑树节点的定义
插入的代码实现
情况一
情况二
uncle不存在
uncle存在且为黑单旋
情况三
uncle存在且为黑的双旋情况
情况二和情况三的总代码
以上是父亲在爷爷左边的情况,右边的情况也类似
左旋代码
右旋代码
红黑树的验证
总代码
红黑树
红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
红黑树的性质
(路径是从根到空节点,上图是11个节点) 不是红黑树
(最长路径:一黑一红相间的路径 最短:全黑路径)
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的(任何路径没有连续的红色节点)
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
红黑树节点的定义
//枚举
//节点颜色
enum Colour
{
RED,
BLACK
};
//红黑树节点的定义
template<class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{}
};
插入的代码实现
检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一
cur为红,p为红,g为黑,u存在且为红
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
举个例子:
//第一种情况父亲在爷爷的左边
if (parent == grandfather->_left)
{
//定义叔叔节点,父亲在左,叔叔节点则在右
Node* uncle = grandfather->_right;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色,父亲和叔叔都变黑,爷爷变红
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理,因为有可能爷爷是子树节点,爷爷的父亲节点可能也是红色
cur = grandfather;
parent = cur->_parent;
}
}
情况二
cur为红,p为红,g为黑,u不存在/u存在且为黑
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红
举个例子
uncle不存在
//uncle不存在,且插入的在父亲的左边
if (cur == parent->_left)
{
// g
// p
// c
//右旋
RotateR(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;
}
//cur在父亲右边时,需要双旋
else
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
还有可能父亲在爷爷的右边
uncle存在且为黑单旋
(变色后,parent不能直接变黑,因为变黑后每个路径的黑节点不同了)
图上情况,插入后先变色,uncle为红色,然后再向上处理,发现uncle为黑色就需要旋转了,旋转后就不用调整了
情况三
uncle存在且为黑的双旋情况
cur为红,p为红,g为黑,u不存在/u存在且为黑
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2
//这种情况也是uncle为黑时,且需要旋转的,上面的是单旋的情况,这个是双旋的情况
情况二和情况三的总代码
else // u不存在 或 存在且为黑
{
//uncle不存在,且插入的在父亲的左边
if (cur == parent->_left)
{
// g
// p
// c
//右旋
RotateR(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;
}
//cur在父亲右边时,需要双旋
else
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
以上是父亲在爷爷左边的情况,右边的情况也类似
//父亲在爷爷右边
else // parent == grandfather->_right
{
Node* uncle = grandfather->_left;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
// g
// p
// c
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
左旋代码
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
右旋代码
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright)
curright->_parent = parent;
Node* ppnode = parent->_parent;
cur->_right = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
红黑树的验证
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
红黑树的删除
红黑树 - _Never_ - 博客园
红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
总代码
RBTree.h
#pragma once
#include<iostream>
#include<assert.h>
#include<vector>
//枚举
//节点颜色
enum Colour
{
RED,
BLACK
};
//红黑树节点的定义
template<class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{}
};
template<class K, class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
//头结点为黑色
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入的新节点默认红色
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
//连接上父子关系
cur->_parent = parent;
//parent存在且为红色时需要进行变色旋转,因为黑色的时候就不用做处理了
while (parent && parent->_col == RED)
{
//定义一下爷爷节点
Node* grandfather = parent->_parent;
//第一种情况父亲在爷爷的左边
if (parent == grandfather->_left)
{
//定义叔叔节点,父亲在左,叔叔节点则在右
Node* uncle = grandfather->_right;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色,父亲和叔叔都变黑,爷爷变红
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理,因为有可能爷爷是子树节点,爷爷的父亲节点可能也是红色
cur = grandfather;
parent = cur->_parent;
}
else // u不存在 或 存在且为黑
{
//uncle不存在,且插入的在父亲的左边
if (cur == parent->_left)
{
// g
// p
// c
//右旋
RotateR(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;
}
//cur在父亲右边时,需要双旋
else
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
//父亲在爷爷右边
else // parent == grandfather->_right
{
Node* uncle = grandfather->_left;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
// g
// p
// c
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
void RotateL(Node* parent)
{
++_rotateCount;
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
void RotateR(Node* parent)
{
++_rotateCount;
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright)
curright->_parent = parent;
Node* ppnode = parent->_parent;
cur->_right = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
bool CheckColour(Node* root, int blacknum, int benchmark)
{
if (root == nullptr)
{
if (blacknum != benchmark)
return false;
return true;
}
if (root->_col == BLACK)
{
++blacknum;
}
if (root->_col == RED && root->_parent && root->_parent->_col == RED)
{
cout << root->_kv.first << "出现连续红色节点" << endl;
return false;
}
return CheckColour(root->_left, blacknum, benchmark)
&& CheckColour(root->_right, blacknum, benchmark);
}
bool IsBalance()
{
return IsBalance(_root);
}
bool IsBalance(Node* root)
{
if (root == nullptr)
return true;
if (root->_col != BLACK)
{
return false;
}
// 基准值
int benchmark = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
++benchmark;
cur = cur->_left;
}
return CheckColour(root, 0, benchmark);
}
int Height()
{
return Height(_root);
}
int Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
private:
Node* _root = nullptr;
public:
int _rotateCount = 0;
};