LangChain学习--LangChain-chatchat代码研读
1.startup.py主函数start_main_server()
async def start_main_server():
import time
import signal
def handler(signalname):
"""
Python 3.9 has `signal.strsignal(signalnum)` so this closure would not be needed.
Also, 3.8 includes `signal.valid_signals()` that can be used to create a mapping for the same purpose.
"""
def f(signal_received, frame):
raise KeyboardInterrupt(f"{signalname} received")
return f
# This will be inherited by the child process if it is forked (not spawned)
signal.signal(signal.SIGINT, handler("SIGINT"))
signal.signal(signal.SIGTERM, handler("SIGTERM"))
mp.set_start_method("spawn")
manager = mp.Manager()
run_mode = None
queue = manager.Queue()
args, parser = parse_args()
if args.all_webui:
args.openai_api = True
args.model_worker = True
args.api = True
args.api_worker = True
args.webui = True
elif args.all_api:
args.openai_api = True
args.model_worker = True
args.api = True
args.api_worker = True
args.webui = False
elif args.llm_api:
args.openai_api = True
args.model_worker = True
args.api_worker = True
args.api = False
args.webui = False
if args.lite:
args.model_worker = False
run_mode = "lite"
dump_server_info(args=args)
if len(sys.argv) > 1:
logger.info(f"正在启动服务:")
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
processes = {"online_api": {}, "model_worker": {}}
def process_count():
return len(processes) + len(processes["online_api"]) + len(processes["model_worker"]) - 2
if args.quiet or not log_verbose:
log_level = "ERROR"
else:
log_level = "INFO"
controller_started = manager.Event()
if args.openai_api:
process = Process(
target=run_controller,
name=f"controller",
kwargs=dict(log_level=log_level, started_event=controller_started),
daemon=True,
)
processes["controller"] = process
process = Process(
target=run_openai_api,
name=f"openai_api",
daemon=True,
)
processes["openai_api"] = process
model_worker_started = []
if args.model_worker:
for model_name in args.model_name:
config = get_model_worker_config(model_name)
if not config.get("online_api"):
e = manager.Event()
model_worker_started.append(e)
process = Process(
target=run_model_worker,
name=f"model_worker - {model_name}",
kwargs=dict(model_name=model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
processes["model_worker"][model_name] = process
if args.api_worker:
for model_name in args.model_name:
config = get_model_worker_config(model_name)
if (config.get("online_api")
and config.get("worker_class")
and model_name in FSCHAT_MODEL_WORKERS):
e = manager.Event()
model_worker_started.append(e)
process = Process(
target=run_model_worker,
name=f"api_worker - {model_name}",
kwargs=dict(model_name=model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
processes["online_api"][model_name] = process
api_started = manager.Event()
if args.api:
process = Process(
target=run_api_server,
name=f"API Server",
kwargs=dict(started_event=api_started, run_mode=run_mode),
daemon=True,
)
processes["api"] = process
webui_started = manager.Event()
if args.webui:
process = Process(
target=run_webui,
name=f"WEBUI Server",
kwargs=dict(started_event=webui_started, run_mode=run_mode),
daemon=True,
)
processes["webui"] = process
if process_count() == 0:
parser.print_help()
else:
try:
# 保证任务收到SIGINT后,能够正常退出
if p := processes.get("controller"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait() # 等待controller启动完成
if p := processes.get("openai_api"):
p.start()
p.name = f"{p.name} ({p.pid})"
for n, p in processes.get("model_worker", {}).items():
p.start()
p.name = f"{p.name} ({p.pid})"
for n, p in processes.get("online_api", []).items():
p.start()
p.name = f"{p.name} ({p.pid})"
for e in model_worker_started:
e.wait()
if p := processes.get("api"):
p.start()
p.name = f"{p.name} ({p.pid})"
api_started.wait()
if p := processes.get("webui"):
p.start()
p.name = f"{p.name} ({p.pid})"
webui_started.wait()
dump_server_info(after_start=True, args=args)
while True:
cmd = queue.get()
e = manager.Event()
if isinstance(cmd, list):
model_name, cmd, new_model_name = cmd
if cmd == "start": # 运行新模型
logger.info(f"准备启动新模型进程:{new_model_name}")
process = Process(
target=run_model_worker,
name=f"model_worker - {new_model_name}",
kwargs=dict(model_name=new_model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
process.start()
process.name = f"{process.name} ({process.pid})"
processes["model_worker"][new_model_name] = process
e.wait()
logger.info(f"成功启动新模型进程:{new_model_name}")
elif cmd == "stop":
if process := processes["model_worker"].get(model_name):
time.sleep(1)
process.terminate()
process.join()
logger.info(f"停止模型进程:{model_name}")
else:
logger.error(f"未找到模型进程:{model_name}")
elif cmd == "replace":
if process := processes["model_worker"].pop(model_name, None):
logger.info(f"停止模型进程:{model_name}")
start_time = datetime.now()
time.sleep(1)
process.terminate()
process.join()
process = Process(
target=run_model_worker,
name=f"model_worker - {new_model_name}",
kwargs=dict(model_name=new_model_name,
controller_address=args.controller_address,
log_level=log_level,
q=queue,
started_event=e),
daemon=True,
)
process.start()
process.name = f"{process.name} ({process.pid})"
processes["model_worker"][new_model_name] = process
e.wait()
timing = datetime.now() - start_time
logger.info(f"成功启动新模型进程:{new_model_name}。用时:{timing}。")
else:
logger.error(f"未找到模型进程:{model_name}")
# for process in processes.get("model_worker", {}).values():
# process.join()
# for process in processes.get("online_api", {}).values():
# process.join()
# for name, process in processes.items():
# if name not in ["model_worker", "online_api"]:
# if isinstance(p, dict):
# for work_process in p.values():
# work_process.join()
# else:
# process.join()
except Exception as e:
logger.error(e)
logger.warning("Caught KeyboardInterrupt! Setting stop event...")
finally:
for p in processes.values():
logger.warning("Sending SIGKILL to %s", p)
# Queues and other inter-process communication primitives can break when
# process is killed, but we don't care here
if isinstance(p, dict):
for process in p.values():
process.kill()
else:
p.kill()
for p in processes.values():
logger.info("Process status: %s", p)
start_main_server主函数包括了openai_api、model_worker、api、api_worker、webui五个模块的启动控制,主要就是通过这一主函数进行判断从而进行调用不同的模块。
2.webui.py
api = ApiRequest(base_url=api_address())
if __name__ == "__main__":
is_lite = "lite" in sys.argv
st.set_page_config(
"Langchain-Chatchat WebUI",
os.path.join("img", "chatchat_icon_blue_square_v2.png"),
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/chatchat-space/Langchain-Chatchat',
'Report a bug': "https://github.com/chatchat-space/Langchain-Chatchat/issues",
'About': f"""欢迎使用 Langchain-Chatchat WebUI {VERSION}!"""
}
)
pages = {
"对话": {
"icon": "chat",
"func": dialogue_page,
},
"知识库管理": {
"icon": "hdd-stack",
"func": knowledge_base_page,
},
}
with st.sidebar:
st.image(
os.path.join(
"img",
"logo-long-chatchat-trans-v2.png"
),
use_column_width=True
)
st.caption(
f"""<p align="right">当前版本:{VERSION}</p>""",
unsafe_allow_html=True,
)
options = list(pages)
icons = [x["icon"] for x in pages.values()]
default_index = 0
selected_page = option_menu(
"",
options=options,
icons=icons,
# menu_icon="chat-quote",
default_index=default_index,
)
if selected_page in pages:
pages[selected_page]["func"](api=api, is_lite=is_lite)
这段代码是使用Streamlit库,配合其他自定义模块,为一个基于Python的Web应用程序,Langchain-Chatchat WebUI,设置了一个入口文件。Streamlit是一个开源Python库,用于快速创建数据应用程序。在这段代码中,Streamlit用来构建用户界面(UI),展示一个包含对话和知识库管理功能的网页应用。
3.serve/api.py
async def document():
return RedirectResponse(url="/docs")
def create_app(run_mode: str = None):
app = FastAPI(
title="Langchain-Chatchat API Server",
version=VERSION
)
MakeFastAPIOffline(app)
# Add CORS middleware to allow all origins
# 在config.py中设置OPEN_DOMAIN=True,允许跨域
# set OPEN_DOMAIN=True in config.py to allow cross-domain
if OPEN_CROSS_DOMAIN:
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
mount_app_routes(app, run_mode=run_mode)
return app
def mount_app_routes(app: FastAPI, run_mode: str = None):
app.get("/",
response_model=BaseResponse,
summary="swagger 文档")(document)
# Tag: Chat
app.post("/chat/chat",
tags=["Chat"],
summary="与llm模型对话(通过LLMChain)",
)(chat)
app.post("/chat/search_engine_chat",
tags=["Chat"],
summary="与搜索引擎对话",
)(search_engine_chat)
app.post("/chat/feedback",
tags=["Chat"],
summary="返回llm模型对话评分",
)(chat_feedback)
# 知识库相关接口
mount_knowledge_routes(app)
# 摘要相关接口
mount_filename_summary_routes(app)
# LLM模型相关接口
app.post("/llm_model/list_running_models",
tags=["LLM Model Management"],
summary="列出当前已加载的模型",
)(list_running_models)
app.post("/llm_model/list_config_models",
tags=["LLM Model Management"],
summary="列出configs已配置的模型",
)(list_config_models)
app.post("/llm_model/get_model_config",
tags=["LLM Model Management"],
summary="获取模型配置(合并后)",
)(get_model_config)
app.post("/llm_model/stop",
tags=["LLM Model Management"],
summary="停止指定的LLM模型(Model Worker)",
)(stop_llm_model)
app.post("/llm_model/change",
tags=["LLM Model Management"],
summary="切换指定的LLM模型(Model Worker)",
)(change_llm_model)
# 服务器相关接口
app.post("/server/configs",
tags=["Server State"],
summary="获取服务器原始配置信息",
)(get_server_configs)
app.post("/server/list_search_engines",
tags=["Server State"],
summary="获取服务器支持的搜索引擎",
)(list_search_engines)
@app.post("/server/get_prompt_template",
tags=["Server State"],
summary="获取服务区配置的 prompt 模板")
def get_server_prompt_template(
type: Literal["llm_chat", "knowledge_base_chat", "search_engine_chat", "agent_chat"]=Body("llm_chat", description="模板类型,可选值:llm_chat,knowledge_base_chat,search_engine_chat,agent_chat"),
name: str = Body("default", description="模板名称"),
) -> str:
return get_prompt_template(type=type, name=name)
# 其它接口
app.post("/other/completion",
tags=["Other"],
summary="要求llm模型补全(通过LLMChain)",
)(completion)
app.post("/other/embed_texts",
tags=["Other"],
summary="将文本向量化,支持本地模型和在线模型",
)(embed_texts_endpoint)
def mount_knowledge_routes(app: FastAPI):
from server.chat.knowledge_base_chat import knowledge_base_chat
from server.chat.file_chat import upload_temp_docs, file_chat
from server.chat.agent_chat import agent_chat
from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb
from server.knowledge_base.kb_doc_api import (list_files, upload_docs, delete_docs,
update_docs, download_doc, recreate_vector_store,
search_docs, DocumentWithVSId, update_info,
update_docs_by_id,)
app.post("/chat/knowledge_base_chat",
tags=["Chat"],
summary="与知识库对话")(knowledge_base_chat)
app.post("/chat/file_chat",
tags=["Knowledge Base Management"],
summary="文件对话"
)(file_chat)
app.post("/chat/agent_chat",
tags=["Chat"],
summary="与agent对话")(agent_chat)
# Tag: Knowledge Base Management
app.get("/knowledge_base/list_knowledge_bases",
tags=["Knowledge Base Management"],
response_model=ListResponse,
summary="获取知识库列表")(list_kbs)
app.post("/knowledge_base/create_knowledge_base",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="创建知识库"
)(create_kb)
app.post("/knowledge_base/delete_knowledge_base",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库"
)(delete_kb)
app.get("/knowledge_base/list_files",
tags=["Knowledge Base Management"],
response_model=ListResponse,
summary="获取知识库内的文件列表"
)(list_files)
app.post("/knowledge_base/search_docs",
tags=["Knowledge Base Management"],
response_model=List[DocumentWithVSId],
summary="搜索知识库"
)(search_docs)
app.post("/knowledge_base/update_docs_by_id",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="直接更新知识库文档"
)(update_docs_by_id)
app.post("/knowledge_base/upload_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="上传文件到知识库,并/或进行向量化"
)(upload_docs)
app.post("/knowledge_base/delete_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库内指定文件"
)(delete_docs)
app.post("/knowledge_base/update_info",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="更新知识库介绍"
)(update_info)
app.post("/knowledge_base/update_docs",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="更新现有文件到知识库"
)(update_docs)
app.get("/knowledge_base/download_doc",
tags=["Knowledge Base Management"],
summary="下载对应的知识文件")(download_doc)
app.post("/knowledge_base/recreate_vector_store",
tags=["Knowledge Base Management"],
summary="根据content中文档重建向量库,流式输出处理进度。"
)(recreate_vector_store)
app.post("/knowledge_base/upload_temp_docs",
tags=["Knowledge Base Management"],
summary="上传文件到临时目录,用于文件对话。"
)(upload_temp_docs)
def mount_filename_summary_routes(app: FastAPI):
from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store,
summary_doc_ids_to_vector_store)
app.post("/knowledge_base/kb_summary_api/summary_file_to_vector_store",
tags=["Knowledge kb_summary_api Management"],
summary="单个知识库根据文件名称摘要"
)(summary_file_to_vector_store)
app.post("/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store",
tags=["Knowledge kb_summary_api Management"],
summary="单个知识库根据doc_ids摘要",
response_model=BaseResponse,
)(summary_doc_ids_to_vector_store)
app.post("/knowledge_base/kb_summary_api/recreate_summary_vector_store",
tags=["Knowledge kb_summary_api Management"],
summary="重建单个知识库文件摘要"
)(recreate_summary_vector_store)
def run_api(host, port, **kwargs):
if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"):
uvicorn.run(app,
host=host,
port=port,
ssl_keyfile=kwargs.get("ssl_keyfile"),
ssl_certfile=kwargs.get("ssl_certfile"),
)
else:
uvicorn.run(app, host=host, port=port)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog='langchain-ChatGLM',
description='About langchain-ChatGLM, local knowledge based ChatGLM with langchain'
' | 基于本地知识库的 ChatGLM 问答')
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7861)
parser.add_argument("--ssl_keyfile", type=str)
parser.add_argument("--ssl_certfile", type=str)
# 初始化消息
args = parser.parse_args()
args_dict = vars(args)
app = create_app()
run_api(host=args.host,
port=args.port,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
)
在startup.py中,通过run_api_server调用server/api.py,启动api服务。它实现了包括对外提供大模型对话、知识库对话、搜索引擎对话、知识库管理和知识库内文件管理等api后端服务。
4.server/chat/knowledge_base_chat.py
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(
SCORE_THRESHOLD,
description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右",
ge=0,
le=2
),
history: List[History] = Body(
[],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(
None,
description="限制LLM生成Token数量,默认None代表模型最大值"
),
prompt_name: str = Body(
"default",
description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
),
request: Request = None,
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History.from_data(h) for h in history]
async def knowledge_base_chat_iterator(
query: str,
top_k: int,
history: Optional[List[History]],
model_name: str = model_name,
prompt_name: str = prompt_name,
) -> AsyncIterable[str]:
nonlocal max_tokens
callback = AsyncIteratorCallbackHandler()
if isinstance(max_tokens, int) and max_tokens <= 0:
max_tokens = None
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
)
docs = await run_in_threadpool(search_docs,
query=query,
knowledge_base_name=knowledge_base_name,
top_k=top_k,
score_threshold=score_threshold)
# 加入reranker
if USE_RERANKER:
reranker_model_path = get_model_path(RERANKER_MODEL)
reranker_model = LangchainReranker(top_n=top_k,
device=embedding_device(),
max_length=RERANKER_MAX_LENGTH,
model_name_or_path=reranker_model_path
)
print("-------------before rerank-----------------")
print(docs)
docs = reranker_model.compress_documents(documents=docs,
query=query)
print("------------after rerank------------------")
print(docs)
context = "\n".join([doc.page_content for doc in docs])
if len(docs) == 0: # 如果没有找到相关文档,使用empty模板
prompt_template = get_prompt_template("knowledge_base_chat", "empty")
else:
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = []
for inum, doc in enumerate(docs):
filename = doc.metadata.get("source")
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename})
base_url = request.base_url
url = f"{base_url}knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
if len(source_documents) == 0: # 没有找到相关文档
source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>")
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token}, ensure_ascii=False)
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
else:
answer = ""
async for token in callback.aiter():
answer += token
yield json.dumps({"answer": answer,
"docs": source_documents},
ensure_ascii=False)
await task
return EventSourceResponse(knowledge_base_chat_iterator(query, top_k, history,model_name,prompt_name))
在方法内部,首先通过search_docs方法查询向量数据库,召回top_k个相似文档。然后通过换行符拼接成context,这就是输入大模型的知识上下文。随后使用模型代理和历史对话记录,初始化chain对象。最后将查询语句和上下文信息输入chain对象,通过asyncio库异步调用大模型进行处理。末尾部分,将知识出处放入返回的json中。
5.server/llm_api.py
def list_running_models(
controller_address: str = Body(None, description="Fastchat controller服务器地址", examples=[fschat_controller_address()]),
placeholder: str = Body(None, description="该参数未使用,占位用"),
) -> BaseResponse:
'''
从fastchat controller获取已加载模型列表及其配置项
'''
try:
controller_address = controller_address or fschat_controller_address()
with get_httpx_client() as client:
r = client.post(controller_address + "/list_models")
models = r.json()["models"]
data = {m: get_model_config(m).data for m in models}
return BaseResponse(data=data)
except Exception as e:
logger.error(f'{e.__class__.__name__}: {e}',
exc_info=e if log_verbose else None)
return BaseResponse(
code=500,
data={},
msg=f"failed to get available models from controller: {controller_address}。错误信息是: {e}")
def list_config_models(
types: List[str] = Body(["local", "online"], description="模型配置项类别,如local, online, worker"),
placeholder: str = Body(None, description="占位用,无实际效果")
) -> BaseResponse:
'''
从本地获取configs中配置的模型列表
'''
data = {}
for type, models in list_config_llm_models().items():
if type in types:
data[type] = {m: get_model_config(m).data for m in models}
return BaseResponse(data=data)
def get_model_config(
model_name: str = Body(description="配置中LLM模型的名称"),
placeholder: str = Body(None, description="占位用,无实际效果")
) -> BaseResponse:
'''
获取LLM模型配置项(合并后的)
'''
config = {}
# 删除ONLINE_MODEL配置中的敏感信息
for k, v in get_model_worker_config(model_name=model_name).items():
if not (k == "worker_class"
or "key" in k.lower()
or "secret" in k.lower()
or k.lower().endswith("id")):
config[k] = v
return BaseResponse(data=config)
def stop_llm_model(
model_name: str = Body(..., description="要停止的LLM模型名称", examples=[LLM_MODELS[0]]),
controller_address: str = Body(None, description="Fastchat controller服务器地址", examples=[fschat_controller_address()])
) -> BaseResponse:
'''
向fastchat controller请求停止某个LLM模型。
注意:由于Fastchat的实现方式,实际上是把LLM模型所在的model_worker停掉。
'''
try:
controller_address = controller_address or fschat_controller_address()
with get_httpx_client() as client:
r = client.post(
controller_address + "/release_worker",
json={"model_name": model_name},
)
return r.json()
except Exception as e:
logger.error(f'{e.__class__.__name__}: {e}',
exc_info=e if log_verbose else None)
return BaseResponse(
code=500,
msg=f"failed to stop LLM model {model_name} from controller: {controller_address}。错误信息是: {e}")
def change_llm_model(
model_name: str = Body(..., description="当前运行模型", examples=[LLM_MODELS[0]]),
new_model_name: str = Body(..., description="要切换的新模型", examples=[LLM_MODELS[0]]),
controller_address: str = Body(None, description="Fastchat controller服务器地址", examples=[fschat_controller_address()])
):
'''
向fastchat controller请求切换LLM模型。
'''
try:
controller_address = controller_address or fschat_controller_address()
with get_httpx_client() as client:
r = client.post(
controller_address + "/release_worker",
json={"model_name": model_name, "new_model_name": new_model_name},
timeout=HTTPX_DEFAULT_TIMEOUT, # wait for new worker_model
)
return r.json()
except Exception as e:
logger.error(f'{e.__class__.__name__}: {e}',
exc_info=e if log_verbose else None)
return BaseResponse(
code=500,
msg=f"failed to switch LLM model from controller: {controller_address}。错误信息是: {e}")
def list_search_engines() -> BaseResponse:
from server.chat.search_engine_chat import SEARCH_ENGINES
return BaseResponse(data=list(SEARCH_ENGINES))
llm_api负责启动fastchat框架的controller、model_worker和openai_api三个组件。虽然这些组件是被llm_api在单节点以子进程的方式启动,通过简单的改造,它们也可以在分布式集群中部署。
- model_worker负责启动和维护模型实例,并向controller注册,执行模型运行任务。
- Controller在FastChat框架中起到中间控制的作用,它本身是基于FastAPI实现的。它管理着分布式集群中的workers,并将worker的地址发送给客户端。
- Openai_api在FastChat框架中主要用于对外提供Openai兼容的API接口服务,它本身也是基于FastAPI实现的。