当前位置: 首页 > article >正文

【动手做】安装Miniconda和jupyter notebook环境实现线性回归

Miniconda提供快速、简便的Python环境管理,包括安装、运行和更新软件包及其依赖项。Jupyter Notebook是一个交互式笔记本,在机器学习研究中广泛使用。本文旨在进行基础的环境配置,为后续的机器学习实践打好基础。

Miniconda与Jupyter Notebook

Conda 是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。

Miniconda是一个小巧的Anaconda的引导版本,核心是Conda。它旨在提供快速、简便的Python环境管理,包括安装、运行和更新软件包及其依赖项。Miniconda只包含Conda、Python、它们依赖的软件包以及少数其他有用的软件包,如pip、zlib等。这些特点使Miniconda成为那些只需要基本Python环境和工具的用户的一个很好的选择。

Jupyter Notebook是一个交互式笔记本,支持运行 40 多种编程语言。 它本质是一个 Web 应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和 markdown。在机器学习能方面非常实用。

安装Miniconda

选择哪个安装包

下面是官网上列举的差别,Miniconda只包含了不到70个package。如果想逐步了解需要哪些package,或者用不到太多package,可以选择Miniconda。根据《动手学深度学习》里指引,这里选择Miniconda。

https://docs.anaconda.com/distro-or-miniconda/

安装Miniconda

从这里进入: Miniconda

查看历史版本记录:Miniconda历史版本

1、找到适合自己机器和Python版本的,比如:Miniconda3-py39_24.7.1-0-MacOSX-x86_64.pkg

2、安装完查看查看安装信息

conda info

初始化环境

初始化conda环境

~/miniconda3/bin/conda init

创建一个使用环境

关闭并重新打开当前的shell。并使用下面的命令创建一个新的环境,这里创建一个名称为mllearning的环境

conda create --name mllearning python=3.9 -y

对应界面显示如下:

安装package:jupyter notebook

这里安装当前需要的:jupyter notebook

安装界面类似下图

按照其它package:numpy,matplotlib

图略

运行线性回归

运行jupyter notebook

对应界面如下,jupyter启动后会打开本地8888端口

创建ipynb文件

创建一个以ipynb作为后缀的文件,我这里取名hello,文本编辑以下内容:

{ "cells":[] }

在浏览器打开如下展示:

打开这个文件,尝试运行一句python,可以看到这里类似console,可以直观看到结果:

线性回归实现

实现逻辑与代码参见上一篇文章:【动手做】Python实现线性回归-CSDN博客

定义模型

定义图像展示

运行代码并展示结果

最后

到这里可以暂时可以休息会了,可以以更加可视化、实时反馈的方式来进行学习了。


http://www.kler.cn/a/401791.html

相关文章:

  • 优化 MFC CGridCtrl 的表格布局与功能
  • 计算机网络-mac地址与ip地址的区别总结
  • KF UKF
  • 技术速递|Microsoft.Extensions.VectorData 预览版简介
  • Django5 2024全栈开发指南(二):Django项目配置详解
  • 在云服务器搭建 Docker
  • Conda 安装纯净版ComfyUI
  • 使用EventLog Analyzer日志分析工具监测 Windows Server 安全威胁
  • 【WPF】Prism学习(五)
  • 无人机航测技术算法概述!
  • ubuntu20.04的arduino+MU编辑器安装教程
  • C++代码优化(五):虚函数的开销和优化方式
  • 初始Python篇(6)—— 字符串
  • 人工智能学习——前言
  • 2024年第十四届APMCM亚太杯数学建模A题B题C题思路+代码解析汇总
  • MATLAB用到的矩阵基础知识(矩阵的乘和矩阵的逆)
  • Axure9生成的阅览页面如何自动展开左侧页面导航?
  • CSS基础也要进行模电实验
  • JSONP处理跨域请求
  • 每日一练:【动态规划算法】斐波那契数列模型之第 N 个泰波那契数(easy)
  • 【白话机器学习系列】白话 Softmax
  • 自动驾驶系统研发系列—智能驾驶新高度:解析ESS驾驶员转向辅助系统
  • C++ STL中常见的容器
  • 面向FWA市场!移远通信高性能5G-A模组RG650V-NA通过北美两大重要运营商认证
  • CSS基础选择器与div布局
  • 社群在 2+1 链动模式 S2B2C 商城小程序社交新零售运营中的价值与应用