当前位置: 首页 > article >正文

[C#] Bgr24彩色位图转为Gray8灰度位图的跨平台SIMD硬件加速向量算法

将彩色位图转为灰度位图,是图像处理的常用算法。本文将介绍 Bgr24彩色位图转为Gray8灰度位图的算法,除了会给出标量算法外,还会给出向量算法。且这些算法是跨平台的,同一份源代码,能在 X86及Arm架构上运行,且均享有SIMD硬件加速。

一、标量算法

1.1 算法实现

对于彩色转灰度,由于人眼对红绿蓝三种颜色的敏感程度不同,在灰度转换时,每个颜色分配的权重也是不同的。有一个很著名的心理学公式:

Gray = R*0.299 + G*0.587 + B*0.114

该公式含有浮点数,而浮点数运算一般比较慢。
于是在具体实现时,需要做一定优化。可以将小数转为定点整数,这样便能将除法转为移位。整数计算比浮点型快,移位运算和加减法比乘除法快,于是取得了比较好的效果。
但是这种方法也会带来一定的精度损失,我们可以根据实际情况选择定点整数的精度位数。
这里我们使用16位精度,源代码如下。

public static unsafe void ScalarDo(BitmapData src, BitmapData dst) {
    const int cbPixel = 3; // Bgr24
    const int shiftPoint = 16;
    const int mulPoint = 1 << shiftPoint; // 0x10000
    const int mulRed = (int)(0.299 * mulPoint + 0.5); // 19595
    const int mulGreen = (int)(0.587 * mulPoint + 0.5); // 38470
    const int mulBlue = mulPoint - mulRed - mulGreen; // 7471
    int width = src.Width;
    int height = src.Height;
    int strideSrc = src.Stride;
    int strideDst = dst.Stride;
    byte* pRow = (byte*)src.Scan0.ToPointer();
    byte* qRow = (byte*)dst.Scan0.ToPointer();
    for (int i = 0; i < height; i++) {
        byte* p = pRow;
        byte* q = qRow;
        for (int j = 0; j < width; j++) {
            *q = (byte)((p[2] * mulRed + p[1] * mulGreen + p[0] * mulBlue) >> shiftPoint);
            p += cbPixel; // Bgr24
            q += 1; // Gray8
        }
        pRow += strideSrc;
        qRow += strideDst;
    }
}

1.2 基准测试代码

使用 BenchmarkDotNet 进行基准测试。
可以实现分配好数据。源代码如下。

private static readonly Random _random = new Random(1);
private BitmapData _sourceBitmapData = null;
private BitmapData _destinationBitmapData = null;
private BitmapData _expectedBitmapData = null;

[Params(1024, 2048, 4096)]
public int Width { get; set; }
public int Height { get; set; }

~Bgr24ToGrayBgr24Benchmark() {
    Dispose(false);
}

public void Dispose() {
    Dispose(true);
    GC.SuppressFinalize(this);
}

private void Dispose(bool disposing) {
    if (_disposed) return;
    _disposed = true;
    if (disposing) {
        Cleanup();
    }
}

private BitmapData AllocBitmapData(int width, int height, PixelFormat format) {
    const int strideAlign = 4;
    if (width <= 0) throw new ArgumentOutOfRangeException($"The width({width}) need > 0!");
    if (height <= 0) throw new ArgumentOutOfRangeException($"The width({height}) need > 0!");
    int stride = 0;
    switch (format) {
        case PixelFormat.Format8bppIndexed:
            stride = width * 1;
            break;
        case PixelFormat.Format24bppRgb:
            stride = width * 3;
            break;
    }
    if (stride <= 0) throw new ArgumentOutOfRangeException($"Invalid pixel format({format})!");
    if (0 != (stride % strideAlign)) {
        stride = stride - (stride % strideAlign) + strideAlign;
    }
    BitmapData bitmapData = new BitmapData();
    bitmapData.Width = width;
    bitmapData.Height = height;
    bitmapData.PixelFormat = format;
    bitmapData.Stride = stride;
    bitmapData.Scan0 = Marshal.AllocHGlobal(stride * height);
    return bitmapData;
}

private void FreeBitmapData(BitmapData bitmapData) {
    if (null == bitmapData) return;
    if (IntPtr.Zero == bitmapData.Scan0) return;
    Marshal.FreeHGlobal(bitmapData.Scan0);
    bitmapData.Scan0 = IntPtr.Zero;
}

[GlobalCleanup]
public void Cleanup() {
    FreeBitmapData(_sourceBitmapData); _sourceBitmapData = null;
    FreeBitmapData(_destinationBitmapData); _destinationBitmapData = null;
    FreeBitmapData(_expectedBitmapData); _expectedBitmapData = null;
}

[GlobalSetup]
public void Setup() {
    Height = Width;
    // Create.
    Cleanup();
    _sourceBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format24bppRgb);
    _destinationBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format8bppIndexed);
    _expectedBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format8bppIndexed);
    RandomFillBitmapData(_sourceBitmapData, _random);
}

使用这些已分配好的数据,能很容易写出ScalarDo 的基准测试代码。

[Benchmark(Baseline = true)]
public void Scalar() {
    ScalarDo(_sourceBitmapData, _destinationBitmapData);
}

二、向量算法

2.1 算法思路

对于24位转8位灰度,可以使用这种办法: 每次从源位图读取3个向量,进行3-元素组的解交织运算,得到 R,G,B 平面数据。随后使用向量化的乘法与加法,来计算灰度值。结果是存储了灰度值的1个向量,可以将它存储到目标位图。
例如 Sse指令集使用的是128位向量,此时1个向量为16字节。每次从源位图读取3个向量,就是读取了48字节,即16个RGB像素。最后将1个向量存储到目标位图,就是写入了16字节,即16个灰度像素。

对于3-元素组的解交织,可以使用 shuffle 类别的指令来实现。例如对于X86架构的 128位向量,可以使用 SSSE3 的 _mm_shuffle_epi8 指令,它对应 NET 中的 Ssse3.Shuffle 方法。源代码如下。

static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part0 = Vector128.Create((sbyte)0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 4, 7, 10, 13).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part0 = Vector128.Create((sbyte)1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part0 = Vector128.Create((sbyte)2, 5, 8, 11, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15).AsByte();

public static Vector128<byte> YGroup3Unzip(Vector128<byte> data0, Vector128<byte> data1, Vector128<byte> data2, out Vector128<byte> y, out Vector128<byte> z) {
    var f0A = YGroup3Unzip_Shuffle_Byte_X_Part0;
    var f0B = YGroup3Unzip_Shuffle_Byte_X_Part1;
    var f0C = YGroup3Unzip_Shuffle_Byte_X_Part2;
    var f1A = YGroup3Unzip_Shuffle_Byte_Y_Part0;
    var f1B = YGroup3Unzip_Shuffle_Byte_Y_Part1;
    var f1C = YGroup3Unzip_Shuffle_Byte_Y_Part2;
    var f2A = YGroup3Unzip_Shuffle_Byte_Z_Part0;
    var f2B = YGroup3Unzip_Shuffle_Byte_Z_Part1;
    var f2C = YGroup3Unzip_Shuffle_Byte_Z_Part2;
    var rt0 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f0A), Ssse3.Shuffle(data1, f0B)), Ssse3.Shuffle(data2, f0C));
    var rt1 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f1A), Ssse3.Shuffle(data1, f1B)), Ssse3.Shuffle(data2, f1C));
    var rt2 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f2A), Ssse3.Shuffle(data1, f2B)), Ssse3.Shuffle(data2, f2C));
    y = rt1;
    z = rt2;
    return rt0;
}

为了使跨平台编写向量算法更方便,我开发了 VectorTraits 库,已经集成了上述算法。该库提供了“Vectors.YGroup3Unzip”方法。该方法能够跨平台,它会使用各个平台的shuffle指令。

  • X86 256-bit: Use _mm256_shuffle_epi8 and other instructions.
  • Arm: Use vqvtbl1q_u8 instructions.
  • Wasm: Use i8x16.swizzle instructions.

2.2 算法实现

有了“Vectors.YGroup3Unzip”方法后,便能方便的编写24位转8位灰度的算法了。灰度系数有8位精度,于是需要将 8位数据变宽为16位后,再来计算乘法与加法。最后再将 16位数据,变窄为8位。源代码如下。

public static unsafe void UseVectorsDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {
    const int cbPixel = 3; // Bgr24
    const int shiftPoint = 8;
    const int mulPoint = 1 << shiftPoint; // 0x100
    const ushort mulRed = (ushort)(0.299 * mulPoint + 0.5); // 77
    const ushort mulGreen = (ushort)(0.587 * mulPoint + 0.5); // 150
    const ushort mulBlue = mulPoint - mulRed - mulGreen; // 29
    Vector<ushort> vmulRed = new Vector<ushort>(mulRed);
    Vector<ushort> vmulGreen = new Vector<ushort>(mulGreen);
    Vector<ushort> vmulBlue = new Vector<ushort>(mulBlue);
    int vectorWidth = Vector<byte>.Count;
    int maxX = width - vectorWidth;
    byte* pRow = pSrc;
    byte* qRow = pDst;
    for (int i = 0; i < height; i++) {
        Vector<byte>* pLast = (Vector<byte>*)(pRow + maxX * cbPixel);
        Vector<byte>* qLast = (Vector<byte>*)(qRow + maxX * 1);
        Vector<byte>* p = (Vector<byte>*)pRow;
        Vector<byte>* q = (Vector<byte>*)qRow;
        for (; ; ) {
            Vector<byte> r, g, b, gray;
            Vector<ushort> wr0, wr1, wg0, wg1, wb0, wb1;
            // Load.
            b = Vectors.YGroup3Unzip(p[0], p[1], p[2], out g, out r);
            // widen(r) * mulRed + widen(g) * mulGreen + widen(b) * mulBlue
            Vector.Widen(r, out wr0, out wr1);
            Vector.Widen(g, out wg0, out wg1);
            Vector.Widen(b, out wb0, out wb1);
            wr0 = Vectors.Multiply(wr0, vmulRed);
            wr1 = Vectors.Multiply(wr1, vmulRed);
            wg0 = Vectors.Multiply(wg0, vmulGreen);
            wg1 = Vectors.Multiply(wg1, vmulGreen);
            wb0 = Vectors.Multiply(wb0, vmulBlue);
            wb1 = Vectors.Multiply(wb1, vmulBlue);
            wr0 = Vector.Add(wr0, wg0);
            wr1 = Vector.Add(wr1, wg1);
            wr0 = Vector.Add(wr0, wb0);
            wr1 = Vector.Add(wr1, wb1);
            // Shift right and narrow.
            wr0 = Vectors.ShiftRightLogical_Const(wr0, shiftPoint);
            wr1 = Vectors.ShiftRightLogical_Const(wr1, shiftPoint);
            gray = Vector.Narrow(wr0, wr1);
            // Store.
            *q = gray;
            // Next.
            if (p >= pLast) break;
            p += cbPixel;
            ++q;
            if (p > pLast) p = pLast; // The last block is also use vector.
            if (q > qLast) q = qLast;
        }
        pRow += strideSrc;
        qRow += strideDst;
    }
}

上面源代码中的“Vectors.ShiftRightLogical_Const”,是VectorTraits 库提供的方法。它能替代 NET 7.0 新增的 Vector.ShiftRightLogical 方法,使早期版本的 NET 也能使用逻辑右移位。
“Vectors.Multiply”也是VectorTraits 库提供的方法。它能避免无符号类型有时没有硬件加速的问题。

2.3 基准测试代码

[Benchmark]
public void UseVectors() {
    UseVectorsDo(_sourceBitmapData, _destinationBitmapData, false);
}

[Benchmark]
public void UseVectorsParallel() {
    UseVectorsDo(_sourceBitmapData, _destinationBitmapData, true);
}

public static unsafe void UseVectorsDo(BitmapData src, BitmapData dst, bool useParallel = false) {
    int vectorWidth = Vector<byte>.Count;
    int width = src.Width;
    int height = src.Height;
    if (width <= vectorWidth) {
        ScalarDo(src, dst);
        return;
    }
    int strideSrc = src.Stride;
    int strideDst = dst.Stride;
    byte* pSrc = (byte*)src.Scan0.ToPointer();
    byte* pDst = (byte*)dst.Scan0.ToPointer();
    int processorCount = Environment.ProcessorCount;
    int batchSize = height / (processorCount * 2);
    bool allowParallel = useParallel && (batchSize > 0) && (processorCount > 1);
    if (allowParallel) {
        int batchCount = (height + batchSize - 1) / batchSize; // ceil((double)length / batchSize)
        Parallel.For(0, batchCount, i => {
            int start = batchSize * i;
            int len = batchSize;
            if (start + len > height) len = height - start;
            byte* pSrc2 = pSrc + start * strideSrc;
            byte* pDst2 = pDst + start * strideDst;
            UseVectorsDoBatch(pSrc2, strideSrc, width, len, pDst2, strideDst);
        });
    } else {
        UseVectorsDoBatch(pSrc, strideSrc, width, height, pDst, strideDst);
    }
}

完整源码在 Bgr24ToGray8Benchmark.cs

随后为该算法编写基准测试代码。

三、基准测试结果

3.1 X86 架构

X86架构下的基准测试结果如下。

BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4460/23H2/2023Update/SunValley3)
AMD Ryzen 7 7840H w/ Radeon 780M Graphics, 1 CPU, 16 logical and 8 physical cores
.NET SDK 8.0.403
  [Host]     : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI
  DefaultJob : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI


| Method               | Width | Mean         | Error      | StdDev     | Ratio | RatioSD | Code Size |
|--------------------- |------ |-------------:|-----------:|-----------:|------:|--------:|----------:|
| Scalar               | 1024  |  1,028.55 us |  12.545 us |  11.735 us |  1.00 |    0.02 |     152 B |
| UseVectors           | 1024  |     94.06 us |   0.606 us |   0.537 us |  0.09 |    0.00 |        NA |
| UseVectorsParallel   | 1024  |     24.98 us |   0.390 us |   0.365 us |  0.02 |    0.00 |        NA |
| PeterParallelScalar  | 1024  |    216.47 us |   1.719 us |   1.524 us |  0.21 |    0.00 |        NA |
|                      |       |              |            |            |       |         |           |
| Scalar               | 2048  |  4,092.26 us |  21.098 us |  18.703 us |  1.00 |    0.01 |     152 B |
| UseVectors           | 2048  |    507.70 us |   9.626 us |  11.459 us |  0.12 |    0.00 |        NA |
| UseVectorsParallel   | 2048  |    118.98 us |   1.025 us |   0.959 us |  0.03 |    0.00 |        NA |
| PeterParallelScalar  | 2048  |    803.30 us |   9.226 us |   8.630 us |  0.20 |    0.00 |        NA |
|                      |       |              |            |            |       |         |           |
| Scalar               | 4096  | 16,391.12 us | 121.643 us | 113.785 us |  1.00 |    0.01 |     152 B |
| UseVectors           | 4096  |  2,472.16 us |  32.452 us |  30.356 us |  0.15 |    0.00 |        NA |
| UseVectorsParallel   | 4096  |  2,034.85 us |  33.074 us |  30.937 us |  0.12 |    0.00 |        NA |
| PeterParallelScalar  | 4096  |  3,139.85 us |  32.657 us |  27.270 us |  0.19 |    0.00 |        NA |
  • Scalar: 标量算法。
  • UseVectors: 矢量算法。
  • UseVectorsParallel: 并发的矢量算法。

3.2 Arm 架构

同样的源代码可以在 Arm 架构上运行。基准测试结果如下。

BenchmarkDotNet v0.14.0, macOS Sequoia 15.0.1 (24A348) [Darwin 24.0.0]
Apple M2, 1 CPU, 8 logical and 8 physical cores
.NET SDK 8.0.204
  [Host]     : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD [AttachedDebugger]
  DefaultJob : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD


| Method               | Width | Mean         | Error     | StdDev    | Ratio | RatioSD |
|--------------------- |------ |-------------:|----------:|----------:|------:|--------:|
| Scalar               | 1024  |    635.31 us |  0.537 us |  0.448 us |  1.00 |    0.00 |
| UseVectors           | 1024  |    127.04 us |  0.567 us |  0.474 us |  0.20 |    0.00 |
| UseVectorsParallel   | 1024  |     46.37 us |  0.336 us |  0.314 us |  0.07 |    0.00 |
| PeterParallelScalar  | 1024  |    202.19 us |  1.025 us |  0.959 us |  0.32 |    0.00 |
|                      |       |              |           |           |       |         |
| Scalar               | 2048  |  2,625.64 us |  1.795 us |  1.402 us |  1.00 |    0.00 |
| UseVectors           | 2048  |    521.40 us |  0.301 us |  0.282 us |  0.20 |    0.00 |
| UseVectorsParallel   | 2048  |    152.11 us |  3.548 us | 10.064 us |  0.06 |    0.00 |
| PeterParallelScalar  | 2048  |    711.00 us |  1.806 us |  1.601 us |  0.27 |    0.00 |
|                      |       |              |           |           |       |         |
| Scalar               | 4096  | 10,457.09 us |  5.697 us |  5.051 us |  1.00 |    0.00 |
| UseVectors           | 4096  |  2,058.16 us |  4.110 us |  3.643 us |  0.20 |    0.00 |
| UseVectorsParallel   | 4096  |  1,152.15 us | 21.134 us | 21.703 us |  0.11 |    0.00 |
| PeterParallelScalar  | 4096  |  2,897.94 us | 56.893 us | 91.871 us |  0.28 |    0.01 |

附录

  • 完整源代码: https://github.com/zyl910/VectorTraits.Sample.Benchmarks/blob/main/VectorTraits.Sample.Benchmarks.Inc/Image/Bgr24ToGray8Benchmark.cs
  • YGroup3Unzip 的文档: https://zyl910.github.io/VectorTraits_doc/api/Zyl.VectorTraits.Vectors.YGroup3Unzip.html
  • VectorTraits 的NuGet包: https://www.nuget.org/packages/VectorTraits
  • VectorTraits 的在线文档: https://zyl910.github.io/VectorTraits_doc/
  • VectorTraits 源代码: https://github.com/zyl910/VectorTraits

http://www.kler.cn/a/405722.html

相关文章:

  • 基于RTEMS项目学习waf build system
  • 彻底理解消息队列的作用及如何选择
  • MongoDB 更新集合名
  • MybatisPlus之1:快速入门
  • C++标准模板库 -- map和set
  • Nacos实现IP动态黑白名单过滤
  • JDK1.8中JVM堆内存等参数配置
  • 微信小程序自定义图片预览操作按钮(解决api预览时不能删除提交服务器等自定义操作)
  • 大数据新视界 -- 大数据大厂之 Impala 性能优化:跨数据中心环境下的挑战与对策(上)(27 / 30)
  • 嵌入式系统与OpenCV
  • FIFO和LRU算法实现操作系统中主存管理
  • Vue.js 性能优化指南:掌握 keep-alive 的使用技巧
  • 面向对象-接口的使用
  • Spring框架特性及包下载(Java EE 学习笔记04)
  • SpringBoot与knife4j的整合使用
  • Spark RDD 的宽依赖和窄依赖
  • 2024年亚太数学建模竞赛问题C宠物产业及相关产业发展分析与对策
  • CEF127编译指南 Windows篇-安装Git和Python(三)
  • C语言深度剖析:定义与声明
  • Go-RPC关键指标分析与企业实践
  • Unity 编辑器下 Android 平台 Addressable 加载模型粉红色,类似材质丢失
  • 金融量化交易模型的突破与前景分析
  • PostGIS创建空间数据库步骤
  • .net6 使用 FreeSpire.XLS 实现 excel 转 pdf - docker 部署
  • 中国省级新质生产力发展指数数据(任宇新版本)2010-2023年
  • 单词的分类(二)冠词和数词