当前位置: 首页 > article >正文

利用Google的OR-Tools解决智能调度问题

解决智能调度问题可以利用Google的OR-Tools库来实现。以下是一个详细的解决思路及解决方案:

一、定义问题

货物信息:包括重量、体积、提货坐标位置、提货时间范围、送货坐标位置、送货时间范围。
车辆信息:包括载重、车厢容积、每公里费用。
目标:最小化总成本,同时满足所有约束条件。

二、建模

使用VRP(Vehicle Routing Problem)模型,扩展为带时间窗的VRP(VRPTW)。
定义决策变量:每个货物由哪辆车运输,以及运输顺序。
定义约束条件:车辆载重和容积限制、时间窗限制、路径长度限制等。
定义目标函数:最小化总成本。

三、求解

使用OR-Tools中的路由库(Routing Library)来求解问题。
设置初始解和搜索策略,以提高求解效率。

四、解决方案

1. 导入必要的库


python
 

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
import math


2. 定义数据结构


python

class Cargo:
    def __init__(self, weight, volume, pickup_location, pickup_time_window, delivery_location, delivery_time_window):
        self.weight = weight
        self.volume = volume
        self.pickup_location = pickup_location
        self.pickup_time_window = pickup_time_window
        self.delivery_location = delivery_location
        self.delivery_time_window = delivery_time_window

class Vehicle:
    def __init__(self, capacity_weight, capacity_volume, cost_per_km):
        self.capacity_weight = capacity_weight
        self.capacity_volume = capacity_volume
        self.cost_per_km = cost_per_km


3. 计算距离和时间


python
 

def distance(location1, location2):
    # 假设location是一个(x, y)坐标
    x1, y1 = location1
    x2, y2 = location2
    return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)

def time_to_travel(distance, speed=1.0):
    # 假设速度为1.0单位距离/单位时间
    return distance / speed


4. 创建数据模型


python
 

def create_data_model():
    data = {}
    data['cargo'] = [
        Cargo(10, 2, (0, 0), (0, 10), (1, 1), (10, 20)),
        Cargo(20, 3, (2, 2), (5, 15), (3, 3), (15, 25)),
        # 添加更多货物信息
    ]
    data['vehicles'] = [
        Vehicle(50, 10, 1.0),
        Vehicle(30, 8, 1.2),
        # 添加更多车辆信息
    ]
    data['distance_matrix'] = []
    for i in range(len(data['cargo']) + 1):
        row = []
        for j in range(len(data['cargo']) + 1):
            if i == 0:
                loc1 = (0, 0)  # 假设起点为(0, 0)
            else:
                loc1 = data['cargo'][i-1].pickup_location
            if j == 0:
                loc2 = (0, 0)  # 假设起点为(0, 0)
            else:
                loc2 = data['cargo'][j-1].pickup_location
            row.append(distance(loc1, loc2))
        data['distance_matrix'].append(row)
    return data


5. 创建路由模型


python
 

def create_routing_model(data):
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), len(data['vehicles']), 0)
    routing = pywrapcp.RoutingModel(manager)

    def distance_callback(from_index, to_index):
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    def demand_callback(index):
        node = manager.IndexToNode(index)
        if node == 0:
            return 0
        return data['cargo'][node-1].weight

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # 车辆容量下限
        [v.capacity_weight for v in data['vehicles']],  # 每辆车的容量
        True,  # 是否强制从0开始
        'Capacity'
    )

    def time_callback(from_index, to_index):
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        if from_node == 0:
            loc1 = (0, 0)
        else:
            loc1 = data['cargo'][from_node-1].pickup_location
        if to_node == 0:
            loc2 = (0, 0)
        else:
            loc2 = data['cargo'][to_node-1].pickup_location
        travel_time = time_to_travel(distance(loc1, loc2))
        if to_node == 0:
            return travel_time
        return travel_time + data['cargo'][to_node-1].pickup_time_window[0]

    time_callback_index = routing.RegisterTransitCallback(time_callback)
    routing.AddDimension(
        time_callback_index,
        0,  # 允许的最大等待时间
        3000,  # 最大时间窗口
        False,  # 不强制从0开始
        'Time'
    )
    time_dimension = routing.GetDimensionOrDie('Time')
    for location_idx, cargo in enumerate(data['cargo']):
        index = manager.NodeToIndex(location_idx + 1)
        time_dimension.CumulVar(index).SetRange(cargo.pickup_time_window[0], cargo.pickup_time_window[1])

    for vehicle_id in range(len(data['vehicles'])):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(data['vehicles'][vehicle_id].pickup_time_window[0], data['vehicles'][vehicle_id].pickup_time_window[1])

    for i in range(len(data['vehicles'])):
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.Start(i)))
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    return routing, manager


6. 求解并输出结果


python
 

def solve_and_print_solution(data, routing, manager):
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    solution = routing.SolveWithParameters(search_parameters)

    if solution:
        total_distance = 0
        total_cost = 0
        for vehicle_id in range(len(data['vehicles'])):
            index = routing.Start(vehicle_id)
            plan_output = f'Route for vehicle {vehicle_id}:\n'
            route_distance = 0
            while not routing.IsEnd(index):
                plan_output += f' {manager.IndexToNode(index)} -> '
                previous_index = index
                index = solution.Value(routing.NextVar(index))
                route_distance += routing.GetArcCostForVehicle(previous_index, index, vehicle_id)
            plan_output += f' {manager.IndexToNode(index)}\n'
            plan_output += f'Distance of the route: {route_distance}m\n'
            print(plan_output)
            total_distance += route_distance
            total_cost += route_distance * data['vehicles'][vehicle_id].cost_per_km
        print(f'Total Distance of all routes: {total_distance}m')
        print(f'Total Cost of all routes: {total_cost}')
    else:
        print('No solution found.')


7. 主函数


python
 

def main():
    data = create_data_model()
    routing, manager = create_routing_model(data)
    solve_and_print_solution(data, routing, manager)

if __name__ == '__main__':
    main()

五、总结


以上代码展示了如何使用Google OR-Tools解决带时间窗的车辆路径问题(VRPTW)。通过定义货物和车辆的信息,计算距离和时间,创建路由模型,并求解最优路径,最终输出满足要求的最低成本方案。可以根据实际需求调整数据模型和参数,以适应不同的应用场景。


http://www.kler.cn/a/410202.html

相关文章:

  • KMeans聚类实验(基础入门)
  • 深度学习模型入门与实践:从零开始理解 AI 的核心
  • 破解天然气巡检挑战,构建智能运维体系
  • 架构师思维中的人、产品和技术
  • centos安装小火车
  • 图像标签格式转换
  • 小程序-基于java+SpringBoot+Vue的美食推荐系统设计与实现
  • 无监督跨域目标检测的语义一致性知识转移
  • vxe-grid table 修改表格数据校验的主题样式
  • 深入解析分布式遗传算法及其Python实现
  • 基于YOLOv8深度学习的智慧农业棉花采摘状态检测与语音提醒系统(PyQt5界面+数据集+训练代码)
  • 一场开源视角的AI会议即将在南京举办
  • 线性代数空间理解
  • CHIMA网络安全攻防大赛经验分享
  • STM32F103C8T6实时时钟RTC
  • 高级java每日一道面试题-2024年11月24日-JVM篇-说说对象分配规则?
  • 【PHP】 基础语法,自学笔记(二)
  • 进程间通信--详解
  • ffmpeg视频滤镜:提取缩略图-framestep
  • 网络安全-安全散列函数,信息摘要SHA-1,MD5原理
  • 道品智能科技移动式水肥一体机:农业灌溉施肥的革新之选
  • springboot获取配置文件中的值
  • java基础知识(常用类)
  • ctfshow单身杯2024wp
  • 大数据和云计算在 WMS 中的应用
  • 力扣—53. 最大子数组和