【RAG 项目实战 05】重构:封装代码
【RAG 项目实战 05】重构:封装代码
NLP Github 项目:
-
NLP 项目实践:fasterai/nlp-project-practice
介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验
-
AI 藏经阁:https://gitee.com/fasterai/ai-e-book
介绍:该仓库主要分享了数百本 AI 领域电子书
-
AI 算法面经:fasterai/nlp-interview-handbook#面经
介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器
-
NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook
介绍:该仓库汇总了 NLP 算法工程师高频面题
- 新增 common.py
- 改造 llm_util.py
- 新增 chain_util.py
- 新增 msg_util.py
- 改造 app.py
新增 common.py
# @Author:青松
# 公众号:FasterAI
# Python, version 3.10.14
# Pytorch, version 2.3.0
# Chainlit, version 1.1.301
class Constants:
MODEL_NAME = {
'QianFan': 'QianFan'
}
改造 llm_util.py
# @Author:青松
# 公众号:FasterAI
# Python, version 3.10.14
# Pytorch, version 2.3.0
# Chainlit, version 1.1.301
from common import Constants
from langchain_community.chat_models import QianfanChatEndpoint
# 加载环境变量
from dotenv import load_dotenv
load_dotenv()
def get_llm(model_name):
llm = None
try:
if model_name == Constants.MODEL_NAME['QianFan']:
llm = QianfanChatEndpoint(
streaming=True,
model="ERNIE-Speed-8K",
)
except:
llm = get_default_llm()
finally:
if llm is None:
llm = get_default_llm()
return llm
def get_default_llm():
default_llm = QianfanChatEndpoint(
streaming=True,
model="ERNIE-Speed-8K",
)
return default_llm
新增 chain_util.py
# @Author:青松
# 公众号:FasterAI
# Python, version 3.10.14
# Pytorch, version 2.3.0
# Chainlit, version 1.1.301
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.vectorstores import VectorStore
def get_chat_chain(llm):
# 提示模板中添加 chat_history
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"你是一个中国古诗词专家,能准确的一字不差的背诵很多古诗词,请用你最大的能力来回答用户的问题。",
),
MessagesPlaceholder("chat_history"),
("human", "{question}"),
]
)
chat_chain = prompt | llm | StrOutputParser()
return chat_chain
新增 msg_util.py
# @Author:青松
# 公众号:FasterAI
# Python, version 3.10.14
# Pytorch, version 2.3.0
# Chainlit, version 1.1.301
import chainlit as cl
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables import RunnableConfig
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
# 存储对话历史
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
async def send_welcome_msg():
# todo: 添加 FasterAI 知识星球图片以及 FastAI 知识库地址
image = cl.Image(url="https://qingsong-1257401904.cos.ap-nanjing.myqcloud.com/wecaht.png")
# 发送一个图片
await cl.Message(
content="**青松** 邀你关注 **FasterAI**, 让每个人的 AI 学习之路走的更容易些!立刻扫码开启 AI 学习、面试快车道 **(^_^)** ",
elements=[image],
).send()
async def response_with_history_by_astream(message: cl.Message, chain, session_id):
# 用 RunnableWithMessageHistory 包装 Chain 添加对话历史能力
runnable_with_history = RunnableWithMessageHistory(
chain,
get_session_history,
input_messages_key="question",
history_messages_key="chat_history",
)
msg = cl.Message(content="")
# 配置中使用 session_id 进行大模型交互
async for chunk in runnable_with_history.astream(
{"question": message.content},
config=RunnableConfig(configurable={"session_id": session_id},
callbacks=[cl.LangchainCallbackHandler()])
):
await msg.stream_token(chunk)
await msg.send()
改造 app.py
# @Author:青松
# 公众号:FasterAI
# Python, version 3.10.14
# Pytorch, version 2.3.0
# Chainlit, version 1.1.301
import chainlit as cl
from common import Constants
import chain_util
import llm_util
import msg_util
# 获取大模型实例
llm = llm_util.get_llm(Constants.MODEL_NAME['QianFan'])
@cl.password_auth_callback
def auth_callback(username: str, password: str):
""" 持久化客户端聊天历史代码,不需要请删除 """
if (username, password) == ("admin", "admin"):
return cl.User(
identifier="admin", metadata={"role": "admin", "provider": "credentials"}
)
else:
return None
@cl.on_chat_start
async def on_chat_start():
""" 监听会话开始事件 """
# 添加 session_id
cl.user_session.set('session_id', 'abc2')
# 发送欢迎信息
await msg_util.send_welcome_msg()
# 初始化链
init_chains()
@cl.on_message
async def on_message(message: cl.Message):
""" 监听用户消息事件 """
# 获得对话链
chat_chain = cl.user_session.get("chat_chain")
# 获取当前的 session_id
session_id = cl.user_session.get("session_id")
# 使用对话历史通过 astream 的方式响应用户消息
await msg_util.response_with_history_by_astream(message, chat_chain, session_id)
def init_chains():
""" 初始化系统中的链 """
# 对话链
chat_chain = chain_util.get_chat_chain(llm)
cl.user_session.set("chat_chain", chat_chain)
【动手学 RAG】系列文章:
- 【RAG 项目实战 01】在 LangChain 中集成 Chainlit
- 【RAG 项目实战 02】Chainlit 持久化对话历史
- 【RAG 项目实战 03】优雅的管理环境变量
- 【RAG 项目实战 04】添加多轮对话能力
- 【RAG 项目实战 05】重构:封装代码
- 【RAG 项目实战 06】使用 LangChain 结合 Chainlit 实现文档问答
- 【RAG 项目实战 07】替换 ConversationalRetrievalChain(单轮问答)
- 【RAG 项目实战 08】为 RAG 添加历史对话能力