当前位置: 首页 > article >正文

卷积神经网络实现图像分类

# 1.导入依赖包
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import matplotlib.pyplot as plt
from torchsummary import summary

BATCH_SIZE = 8


# 2. 获取数据集
def create_dataset():
    # 加载数据集:训练集数据和测试数据
    train = CIFAR10(root='data', train=True, transform=Compose([ToTensor()]))
    valid = CIFAR10(root='data', train=False, transform=Compose([ToTensor()]))
    # 返回数据集结果
    return train, valid


# if __name__ == '__main__':
#     # 数据集加载
#     train_dataset, valid_dataset = create_dataset()
#     # 数据集类别
#     print("数据集类别:", train_dataset.class_to_idx)
#     # 数据集中的图像数据
#     print("训练集数据集:", train_dataset.data.shape)
#     print("测试集数据集:", valid_dataset.data.shape)
#     # 图像展示
#     plt.figure(figsize=(2, 2))
#     plt.imshow(train_dataset.data[1])
#     plt.title(train_dataset.targets[1])
#     plt.show()


# 3.模型构建
class ImageClassification(nn.Module):
    # 定义网络结构
    def __init__(self):
        super(ImageClassification, self).__init__()
        # 定义网络层:卷积层+池化层
        self.conv1 = nn.Conv2d(3, 6, stride=1, kernel_size=3)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(6, 16, stride=1, kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 全连接层
        self.linear1 = nn.Linear(576, 120)
        self.linear2 = nn.Linear(120, 84)
        self.out = nn.Linear(84, 10)

    # 定义前向传播
    def forward(self, x):
        # 卷积+relu+池化
        x = torch.relu(self.conv1(x))
        x = self.pool1(x)
        # 卷积+relu+池化
        x = torch.relu(self.conv2(x))
        x = self.pool2(x)
        # 将特征图做成以为向量的形式:相当于特征向量
        x = x.reshape(x.size(0), -1)
        # 全连接层
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        # 返回输出结果
        return self.out(x)


# if __name__ == '__main__':
#     # 模型实例化
#     model = ImageClassification()
#     summary(model, input_size=(3, 32, 32), batch_size=1)

# 4.训练函数编写
def train(model, train_dataset):
    criterion = nn.CrossEntropyLoss()  # 构建损失函数
    optimizer = optim.Adam(model.parameters(), lr=1e-3)  # 构建优化方法
    epoch = 20  # 训练轮数
    for epoch_idx in range(epoch):
        # 构建数据加载器
        dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
        sam_num = 0  # 样本数量
        total_loss = 0.0  # 损失总和
        start = time.time()  # 开始时间
        # 遍历数据进行网络训练
        for x, y in dataloader:
            output = model(x)
            loss = criterion(output, y)  # 计算损失
            optimizer.zero_grad()  # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step()  # 参数更新
            total_loss += loss.item()  # 统计损失和
            sam_num += 1
        print('epoch:%2s loss:%.5f time:%.2fs' % (epoch_idx + 1, total_loss / sam_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'data/image_classification.pth')




def test(valid_dataset):
    # 构建数据加载器
    dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
    # 加载模型并加载训练好的权重
    model = ImageClassification()
    model.load_state_dict(torch.load('data/image_classification.pth'))
    model.eval()
    # 计算精度
    total_correct = 0
    total_samples = 0
    # 遍历每个batch的数据,获取预测结果,计算精度
    for x, y in dataloader:
        output = model(x)
        total_correct += (torch.argmax(output, dim=-1) == y).sum()
        total_samples += len(y)
        # 打印精度
    print('Acc: %.2f' % (total_correct / total_samples))


if __name__ == '__main__':
    # 数据集加载
    train_dataset, valid_dataset = create_dataset()
    # 模型实例化
    model = ImageClassification()
    # 模型训练
    # train(model, train_dataset)
    # 模型预测
    test(valid_dataset)

http://www.kler.cn/a/415048.html

相关文章:

  • 做异端中的异端 -- Emacs裸奔之路1: Vim vs Emacs
  • Rust 基础语法
  • 阅读《基于蒙特卡洛法的破片打击无人机易损性分析》_笔记
  • elasticsearch单节点模式部署
  • 1、Three.js开端准备环境
  • 在 Django 中创建和使用正整数、负数、小数等数值字段
  • 【HF设计模式】01-策略模式
  • 【Linux | 计网】TCP协议详解:从定义到连接管理机制
  • 【Spring源码核心篇-04】spring中refresh刷新机制的流程和实现
  • FPGA工具链及功能介绍
  • linux安装部署mysql资料
  • MFC图形函数学习12——位图操作函数
  • Jenkins-基于 SSH 实现 Jenkins 分布式
  • 远程视频验证如何改变商业安全
  • 面试手撕题积累
  • 林业产品推荐系统:Spring Boot优化策略
  • 计算机网络:网络安全
  • helm手动部署Kafka集群
  • 高级java每日一道面试题-2024年11月25日-JVM篇-说说Java对象创建过程?
  • 前端安全和解决方案
  • 在Android上使用MD工业相机的开发示例
  • Rust学习笔记_03——元组
  • 【大模型】基于LLaMA-Factory的模型高效微调
  • 高效赋能游戏业务:全面解析游戏托管服务的价值与实践
  • 基于Java+SpringBoot+Mysql在线简单拍卖竞价拍卖竞拍系统功能设计与实现八
  • Vue3 常用指令解析:v-bind、v-if、v-for、v-show、v-model