复杂网络(四)
一、规则网络
- 孤立节点网络
- 全局耦合网络(又称完全网络)
- 星型网络
- 一维环
- 二维晶格
编程实践:
import networkx as nx
import matplotlib.pyplot as plt
n = 10
#创建孤立节点图
G1 = nx.Graph()
G1.add_nodes_from(list(range(n)))
plt.figure(figsize = (4,4))
nx.draw(G1, pos = nx.circular_layout(G1),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()
#创建完全图
G2 = nx.complete_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G2, pos = nx.circular_layout(G2),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()
#创建一维环状图
G3 = nx.cycle_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G3,pos = nx.circular_layout(G3),node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()
#创建K近邻(耦合)图
G4 = nx.watts_strogatz_graph(n,4,0)
plt.figure(figsize = (4,4))
nx.draw(G4, pos = nx.circular_layout(G4),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()
#二维方格图
G5 = nx.grid_graph((6,6),periodic=False)
plt.figure(figsize = (4,4))
nx.draw(G5, with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()
二、ER随机网络的生成算法
(1)G(N,L)模型:N个节点通过L条随机放置的链接彼此相连
(2)G(N,p)模型:N个节点中,每对节点之间以概率p彼此相连
G(N,p)步骤如下:
(1)从N个孤立节点开始
(2)选择一对节点,产生一个0到1之间的随机数。如果该随机数小于p,在这对节点之间放置一条链接;否则,该节点对保持不连接。
(3)对所有N(N - 1)/2个节点对,重复步骤。
编程实践:
import random
import itertools
import matplotlib.pyplot as plt
import networkx as nx
def GNL(N,L):
G = nx.Graph()
G.add_nodes_from(range(N))
nlist = list(G)
edge_count = 0
while edge_count < L:
u = random.choice(nlist)
v = random.choice(nlist)
if u == v or G.has_edge(u,v):
continue
else:
G.add_edge(u,v)
edge_count += 1
return G
# G = GNL(100,200)
def GNP(N,p):
edges = itertools.combinations(range(N), 2)
G = nx.Graph()
G.add_nodes_from(range(N))
nlist = list(G)
for u,v in itertools.combinations(nlist,2):
if random.random() < p:
G.add_edge(u,v)
return G
# G = GNP(100,0.2)
#可以直接调用库函数来生成这种两种网络
n,m,p = 10,20,0.2
g1 = nx.gnm_random_graph(n,m)
g2 = nx.erdos_renyi_graph(n,p)
plt.figure(figsize = (8,4))
nx.draw(g1, pos = nx.circular_layout(g1),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,L)")
plt.show()
nx.draw(g2, pos = nx.circular_layout(g2),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,p)")
plt.show()
三、ER随机网络结构特征
期望连边数,在连接概率为p的ER随机图中,可知其平均度为 pN
ER随机网络的度分布:规模小服从二项分布,规模大时服从泊松分布
编程实践:
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy import stats
#定义求度分布函数
def get_pdf(G,kmin,kmax):
k = list(range(kmin,kmax + 1))
N = len(G.nodes())
Pk = []
for ki in k:
c = 0
for i in G.nodes():
if G.degree(i) == ki:
c += 1
Pk.append(c/N)
return k,Pk
samples = 100 #统计平均
N = [100,1000]
kmin,kmax,avk = 20,80,50
s1 = np.zeros(kmax - kmin + 1)
s2 = np.zeros(kmax - kmin + 1)
for i in range(samples):
ER1 = nx.gnp_random_graph(N[0],avk/N[0])
x1,y1 = get_pdf(ER1,kmin,kmax)
ER2 = nx.gnp_random_graph(N[1],avk/N[1])
x2,y2 = get_pdf(ER2,kmin,kmax)
s1 += np.array(y1)
s2 += np.array(y2)
#计算二项分布理论值
n = 100
p = 0.5
k = np.arange(20,81)
pk_b = stats.binom.pmf(k,n,p)
#计算泊松分布理论值
pk_p = [np.exp(-avk)*(avk**ki)/math.factorial(ki) for ki in range(kmin,kmax + 1)]
plt.figure(figsize=(6,4))
plt.plot(x1, s1/samples, 'ro', label='$N = 100$')
plt.plot(x2, s2/samples, 'bs', label='$N = 1000$')
plt.plot(x2, pk_b, 'g-', label='binomial')
plt.plot(x2, pk_p, 'r-', label='poisson')
plt.legend(loc=0)
plt.xlabel("$k$")
plt.ylabel("$p_k$")
plt.xlim([20,80])
plt.show()