当前位置: 首页 > article >正文

BERT模型的输出格式探究以及提取出BERT 模型的CLS表示,last_hidden_state[:, 0, :]用于提取每个句子的CLS向量表示

说在前面

最近使用自己的数据集对bert-base-uncased进行了二次预训练,只使用了MLM任务,发现在加载训练好的模型进行输出CLS表示用于下游任务时,同一个句子的输出CLS表示都不一样,并且控制台输出以下警告信息。说是没有这些权重。

Some weights of BertModel were not initialized from the model checkpoint at ./model/test-model and are newly initialized: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

BertModel 的某些权重在 ./model/test-model 的模型检查点时未被初始化,现在是新初始化的: ['bert.pooler.dense.bias','bert.pooler.dense.weight']。
您可能应该在下流任务中训练该模型,以便将其用于预测和推理。

问题原因

我刚开始获取CLS token表示使用的是以下方式,池化后的CLS token表示。

# 获取池化后的[CLS] token 表示
pooler_output = outputs.pooler_output 

但是我使用的模型是以下加载方式,它的输出并不包含 pooler_output,因为这个模型是为 掩码语言模型(Masked Language Model)任务设计的,而不是用于分类任务。因此,模型的输出包括 last_hidden_state,而不包括 pooler_output

model = AutoModelForMaskedLM.from_pretrained(BERT_PATH).to('cuda')
# 或者
model = BertForMaskedLM.from_pretrained(BERT_PATH).to('cuda')

所以我加载使用训练后的模型总是对同一个句子的CLS输出总是变化,就是没有pooler_output层的权重参数,它加载模型推理时自己随机初始化了pooler_output层权重参数。

解决方法

一共有两个解决方法。

1. 直接使用last_hidden_state[:,0,:]获取每个句子的cls token的表示。缺点:cls 表示在句子级表示方面差于pooler_output表示。

2. 修改训练的模型架构,添加池化层。pooler_output表示的优点是它对 [CLS] token 的表示进行了池化处理,它通常是更好的句子级别表示。

1. BERT模型的输出格式探究

last_hidden_state

last_hidden_state:这是一个张量,形状为 [batch_size, sequence_length, hidden_size]

  • batch_size:一次传入模型的样本数。
  • sequence_length:输入序列的长度(即输入文本中的 token 数量)。
  • hidden_size:每个 token 的隐藏状态向量的维度,通常是 768(BERT-base)或 1024(BERT-large)。

形象生动图形

真实示例

以下是1个batch_size的真实数据,每一行就是一个token,共有512行。每行里面的数值共有768个。该last_hidden_state 的形状是 [1, 512, 768]

last_hidden_state:  

tensor([[[-0.1043,  0.0966, -0.2970,  ..., -0.3728,  0.2120,  0.5492],
         [ 0.0131, -0.0778,  0.0908,  ..., -0.1869,  1.0111,  0.1027],
         [-0.8840,  0.3916,  0.3881,  ..., -0.5864,  0.3374,  0.1069],
         ...,
         [-0.2845, -0.8075,  0.6715,  ..., -0.5281,  0.5046, -0.6814],
         [-0.4623, -0.6836, -0.8556,  ...,  0.1499,  0.1142,  0.0486],
         [ 0.5701, -0.1264, -0.2348,  ...,  0.2635, -0.4314, -0.1724]]])

2. 获取每个句子的CLS token向量表示

last_hidden_state[:, 0, :]的含义=CLS向量表示

  • 表示我们选择了所有的批次样本。batch_size 为 1 时,选择所有样本,即 [1, 512, 768] 中的所有样本。
  • 0:表示我们选择了每个句子序列中的第一个 token(索引 0),在 BERT 中,输入序列的第一个 token 通常是 [CLS] token。因此,0 索引指向 [CLS] token 对应的隐藏状态。
  • 表示我们选择了所有的隐藏维度(即每个 token 的隐藏状态),也就是每个 token 的向量表示,通常为 768 维(对于 BERT-base)。

因此该操作的含义是:每个句子有512个token,提取每个句子里面的第1个token向量,人话说就是每个句子的的第1个token向量就是每个句子的CLS向量表示。

结果:这将会返回一个形状为 [1, 768] 的张量,它包含了 [CLS] token 的表示。由于 batch_size=1,最终的张量只有一个样本。

为什么last_hidden_state[:, 0, :]提取的就是每个句子的CLS token表示呢?

在 BERT 模型中,[CLS] token 是一个特殊的 token,通常用于表示整个句子的嵌入(embedding),特别是在分类任务中,[CLS] token 的输出被用作整个输入句子的向量表示。

  • 分类任务 中(如情感分析、文本分类等),通常使用 [CLS] token 的表示 作为整个句子的特征向量输入到分类器中。
  • 其他任务 中(如命名实体识别、问答系统等),[CLS] token 的表示也常常被用作输入的高层特征。

3. last_hidden_state 和 pooler_output的含义区别

outputs.last_hidden_stateoutputs.pooler_output 是 BERT 模型的两个重要输出,二者之间有明显的区别。它们分别代表了不同层级的模型输出,具体如下:

outputs.last_hidden_state

  • 定义last_hidden_state 是 BERT 模型中每一层的输出,包含了模型对于输入文本中每个 token 的隐藏表示。

  • 形状last_hidden_state 的形状通常是 [batch_size, sequence_length, hidden_size],即:

    • batch_size:批次中样本的数量。
    • sequence_length:输入序列(即文本)的长度,通常是 token 的个数(包括 [CLS][SEP] token)。
    • hidden_size:每个 token 的隐藏状态向量的维度(通常是 768,对于 bert-base-uncased)。
  • 用途last_hidden_state 是 BERT 对每个 token 的表示,包含了输入文本中每个 token 在其上下文中被表示出来的隐藏状态。它包含了完整的上下文信息。

    例如,对于输入文本 "Hello, how are you?",last_hidden_state 包含了 "Hello"",""how" 等每个 token 的上下文嵌入(表示)。你可以根据这个输出提取每个 token 的表示或使用 [CLS] token 的表示(last_hidden_state[:, 0, :])作为整个句子的表示。

outputs.pooler_output

  • 定义pooler_output 是一个经过额外处理的 [CLS] token 的表示。BERT 的 pooler 是一个简单的全连接层,它接收 last_hidden_state[CLS] token 的输出,然后对其进行处理(通常是通过一个 tanh 激活函数)以得到一个句子级别的特征表示。
  • 形状pooler_output 的形状通常是 [batch_size, hidden_size],即:
    • batch_size:批次中的样本数。
    • hidden_size:每个样本的 pooler_output 的维度(通常是 768)。
  • 用途pooler_output[CLS] token 的经过进一步处理后的表示,通常用于分类任务中。pooler_output 是通过对 last_hidden_state[CLS] token 的输出应用池化操作(通常是 tanh 激活函数)得到的最终句子级别的表示。这个表示通常用于下游任务,如分类任务。

两者的区别

  • last_hidden_state

    • 是 BERT 的每个 token 的 上下文表示。它是来自模型的 所有 token 的输出,形状为 [batch_size, sequence_length, hidden_size]
    • 它包含了对输入文本中每个 token 的隐藏状态表示,可以通过它提取每个 token(包括 [CLS])的表示。
  • pooler_output

    • 仅包含 [CLS] token 的表示,并且是经过池化处理(通过 tanh)后的结果,形状为 [batch_size, hidden_size]
    • 它通常用于 句子级别的表示,尤其在分类任务中,pooler_output 是更常见的输入特征。

何时使用哪一个?

  • last_hidden_state:如果你需要每个 token 的表示(如进行命名实体识别、文本生成等任务),你应该使用 last_hidden_state
    • 例如:对于文本分类任务中的 BERT 模型,你通常会使用 [CLS] token 的 last_hidden_state 来提取句子的表示,last_hidden_state[:, 0, :]
  • pooler_output:如果你只是进行 句子级别的分类任务(如情感分析、文本分类等),通常会直接使用 pooler_output,因为它已经对 [CLS] token 的表示进行了处理,通常是更好的句子级别表示。
    • 例如:对于情感分析,你会使用 pooler_output 作为整个句子的向量表示进行分类。

代码示例

假设你正在使用 BERT 模型进行文本分类,你可以使用以下代码来区分这两个输出:

import torch
from transformers import BertModel, BertTokenizer

# 加载模型和分词器
model = BertModel.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

# 输入文本
text = "Hello, how are you?"

# 编码文本
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)

# 获取模型的输出
with torch.no_grad():
    outputs = model(**inputs)

# 获取每个 token 的表示
last_hidden_state = outputs.last_hidden_state  # [batch_size, sequence_length, hidden_size]

# 获取[CLS] token 的表示(从 last_hidden_state 中提取)
cls_last_hidden = last_hidden_state[:, 0, :]  # [batch_size, hidden_size]

# 获取池化后的[CLS] token 表示
pooler_output = outputs.pooler_output  # [batch_size, hidden_size]

print("CLS token's last hidden state:", cls_last_hidden)
print("CLS token's pooler output:", pooler_output)

总结

  • last_hidden_state:包含了每个 token 的 上下文表示,你可以用它来获取每个 token 的隐藏状态(包括 [CLS])。
  • pooler_output:仅包含 [CLS] token 的表示,并且经过了池化处理,通常用于句子级别的任务,如文本分类。

4. 疑惑:pooler_output表示问题

我对bert进行了二次预训练后保存的模型输出发现并没有pooler_output权重参数(也就是文章开始处给出的警告信息),但是我又想要使用训练后的模型进行情感分析,我是直接使用lasthiddenstate的cls token表示呢,还是对其加一个池化处理呢?

cls_output = outputs.last_hidden_state[:, 0, :]  
print(cls_output)

pooler_output = outputs.pooler_output
print("pooler_output: ", pooler_output)

没有pooler_output权重参数的原因分析

因为我使用的是 BertForMaskedLM 模型,它的输出并不包含 pooler_output,因为这个模型是为 掩码语言模型(Masked Language Model)任务设计的,而不是用于分类任务。因此,模型的输出包括 last_hidden_state,而不包括 pooler_output

解决方案

1. 直接使用 last_hidden_state[:, 0, :]([CLS] token 的表示)

cls_representation = outputs.last_hidden_state[:, 0, :]

2. [CLS] token 的表示进行池化或全连接层处理

我觉得仅使用 CLS token 的输出还不够,可以加一个简单的全连接层(例如,用 tanh 激活函数)来进一步池化或优化 CLS token 的表示。

import torch.nn as nn

class SentimentAnalysisModel(nn.Module):
    def __init__(self, model):
        super(SentimentAnalysisModel, self).__init__()
        self.bert = model
        self.fc = nn.Linear(768, 2)  # 假设是二分类任务(情感分析)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        cls_rep = outputs.last_hidden_state[:, 0, :]  # 获取 [CLS] token 的表示
        logits = self.fc(cls_rep)  # 使用全连接层进行分类
        return logits

# 使用训练后的模型来构建情感分析模型
sentiment_model = SentimentAnalysisModel(model)

在这个例子中,cls_rep[CLS] token 的表示,之后我们将其传入一个全连接层进行二分类(情感分析)。当然,如果你有更多类别,你可以根据任务需要修改输出层。

总结

  • 没有 pooler_output:由于我使用的是 BertForMaskedLM,该模型的输出没有 pooler_output,但你可以使用 last_hidden_state[:, 0, :](即 [CLS] token 的表示)作为句子级别的特征来进行情感分析。
  • 是否加池化:我觉得仅使用 [CLS] token 的表示不够好,可以加一个池化层或全连接层来进一步处理该表示,通常这种方式会提高分类性能。

因此,可以继续使用 last_hidden_state 中的 [CLS] token 作为情感分析的特征,如果需要提高模型效果,可以尝试在其基础上加一个池化层或全连接层。

5. 修改模型加载器方法探究

有没有其他解决方法呢,让我二次预训练后的模型有pooler_output。可以修改模型加载器吗,但是我使用的是MLM任务来二次预训练bert模型。我的训练任务是对bert模型进行二次预训练。

为了在训练后的 BERT 模型中有 pooler_output,需要稍作修改,因为默认的 BertForMaskedLM 模型并不包含 pooler_output(该输出通常用于分类任务的 BERT 模型,例如 BertForSequenceClassification)。因此,可以通过修改模型的架构来实现这一目标。

解决方案:修改模型架构

在加载模型时,选择使用 BertModel 或继承 BertForMaskedLM 的新模型,并手动添加一个池化层(如全连接层)。这种方法允许继续使用 MLM 任务,同时为分类任务提供所需的 pooler_output

修改代码的步骤

第一步:继承 BertForMaskedLM 并添加 pooler_output

  • 修改 BertForMaskedLM 模型,使其输出 pooler_output
  • 可以通过添加一个全连接层来模拟池化过程。
class BertWithPoolerOutput(BertForMaskedLM):
    def __init__(self, config):
        super().__init__(config)
        # 定义pooler层
        self.pooler = torch.nn.Linear(config.hidden_size, config.hidden_size)
        self.tanh = torch.nn.Tanh()
        # 使用BertModel来获得last_hidden_state
        self.bert = BertModel(config)

    def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, labels=None):
        # 使用BertModel来获取last_hidden_state
        bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask,
                                 token_type_ids=token_type_ids)
        last_hidden_state = bert_outputs.last_hidden_state  # 获取last_hidden_state

        # 提取[CLS]的输出
        cls_token_representation = last_hidden_state[:, 0, :]  # 获取[CLS] token的表示
        # 通过池化层(全连接层)进行处理
        pooler_output = self.tanh(self.pooler(cls_token_representation))

        # 获取BERT的MaskedLM输出
        lm_outputs = super().forward(input_ids=input_ids, attention_mask=attention_mask,
                                     token_type_ids=token_type_ids, labels=labels)

        # 返回字典,包含loss, logits, pooler_output
        return {
            'loss': lm_outputs.loss,
            'logits': lm_outputs.logits,
            'pooler_output': pooler_output
        }

在这个新类 BertWithPoolerOutput 中,我们继承了 BertForMaskedLM,并增加了一个池化层 (self.pooler) 和激活函数(tanh),用于生成 pooler_output。此修改确保在进行二次预训练时仍然可以使用池化后的表示。为了正确获取 last_hidden_state,我们应该调用 BertModel 来获取 last_hidden_state,而不是直接从 BertForMaskedLM 获取。

第2步:加载并训练这个模型

通过这种方式,加载并训练模型时,模型将返回 pooler_output,就可以使用它进行情感分析或其他分类任务。

from transformers import BertTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from transformers import DataCollatorForLanguageModeling

# 训练和数据集代码保持不变,只是模型加载部分更换为我们自定义的模型
tokenizer = BertTokenizer.from_pretrained(BERT_PATH)
model = BertWithPoolerOutput.from_pretrained(BERT_PATH)  # 使用我们自定义的模型

# 其余的训练部分和数据处理代码不变

第三步:在训练过程中使用 pooler_output

训练结束后,模型将返回 pooler_output,你可以直接使用它进行分类任务。

# 假设输出为 `outputs`,你可以访问 `pooler_output`
pooler_output = outputs.pooler_output

总结

  • 可以通过 自定义模型 来为 BertForMaskedLM 添加 pooler_output,方法是在原有的 BertForMaskedLM 上增加一个池化层。
  • 这样,模型仍然可以用于 MLM 任务,同时也能输出 pooler_output,而它通常是更好的句子级别表示,便于后续情感分析等任务。
  • 训练完成后,就能使用 pooler_output,它是通过池化 [CLS] token 的表示得到的句子级别的特征。


http://www.kler.cn/a/428745.html

相关文章:

  • 搭建Hadoop源代码阅读环境
  • 线程池 | java中的多线程
  • kafka学习笔记7 性能测试 —— 筑梦之路
  • ConvBERT:通过基于跨度的动态卷积改进BERT
  • Git下载安装
  • 2024 年度学习总结
  • DSA 和 ECDSA 签名算法
  • 调用matlab用户自定义的function函数时,有多个输出变量只输出第一个变量
  • 【Linux课程学习】:站在文件系统之上理解:软硬链接,软硬链接的区别
  • 面试中遇到的一些有关进程的问题(有争议版)
  • Linux学习笔记15 何为HDD,SSD?sata?PCIE?分区,MBR,GPT分区的理解
  • STM32标准固件库官网下载方法
  • Spring Boot微服务应用实战:构建高效、可扩展的服务架构
  • 显示设备驱动开发
  • 【力扣】2094.找出3为偶数
  • 【Leetcode 每日一题】3001. 捕获黑皇后需要的最少移动次数
  • 【CSS in Depth 2 精译_066】11.2 颜色的定义(上):实现示例页中的基础样式及初步布局
  • vim实用命令整理(常用的命令)
  • mybatis plus打印sql日志
  • Apache Doris 数据类型
  • 海报在线制作系统海报制作小程序PHP+Uniapp
  • Elasticsearch:使用 Elastic APM 监控 Android 应用程序
  • SPT: Revisiting the Power of Prompt for Visual Tuning
  • 【jvm】垃圾回收的重点区域
  • 【Linux内核】Hello word程序
  • AIGC实战——VQ-GAN(Vector Quantized Generative Adversarial Network)