当前位置: 首页 > article >正文

第J9周:Inception v3算法实战与解析

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

    文章目录

    • 一、前言
      • 1、理论基础
    • 二、代码流程
      • 1、导入包,设置GPU
      • 2、导入数据
      • 3、数据处理
      • 4、设置网络
      • 5、查看网络
      • 6、训练函数
      • 7、测试函数
      • 8、正式训练
      • 9、模型评估

电脑环境:
语言环境:Python 3.8.0
深度学习环境:torch 2.5.1+cu121

一、前言

1、理论基础

Inception v3由谷歌研究员Christian Szegedy 等人在2015年的论文《Rethinking the Inception Architecture for Computer Vision》 中提出。Inception v3是Inception网络系列的第三个版本,它在lmageNet图像识别竞赛中取得了优异成绩,尤其是在大规模图像识别任务中表现出色。
Inception v3的主要特点如下:
1、 更深的网络结构:Inception v3比之前的inception网络结构更深,包含了48层卷积层。这使得网络可以提取更多层次的特征,从而在图像识别任务上取得更好的效果。
2、使用Factorized Convolutions : Inception v3采用了Factorized Convolutions (分解卷积),将较大的卷积核分解为多个较小的卷积核。这种方法可以降低网络的参数数量,减少计算复杂度,同时保持良好的性能。
3、使用Batch Normalization:Inception v3在每个卷积层之后都添加了Batch Normalization (BN),这有助于网络的收敛和泛化能力。BN可以减少Internal Covariate Shift (内部协变量偏移)现象,加快训练速度,同时提高模型的鲁棒性。
4、辅助分类器:Inception v3引1入了辅助分类器,可以在网络训练过程中提供额外的梯度信息,帮助网络更好地学习特征。辅助分类器位于网络的某个中间层,其输出会与主分类器的输出进行加权融合,从而得到最终的预测结果。
5、基于RMSProp的优化器:Inception v3使用了RMSProp优化器进行训练。相比于传统的随机梯度下降(SGD)方法,RMSProp可以自适应地调整学习率,使得训练过程更加稳定,收敛速度更快。

Inception v3在图像分类、物体检测和图像分割等计算机视觉任务中均取得了显著的效果。然而,由于其较大的网络结构和计算复杂度,Inception v3在实际应用中可能需要较高的硬件要求。

二、代码流程

1、导入包,设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
import torch.nn.functional as F
from torchvision import transforms, datasets
import os, PIL, pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2、导入数据

data_dir = './data/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[-1] for path in data_paths]
classeNames

‘cloudy’, ‘sunrise’, ‘shine’, ‘rain’]

3、数据处理

train_transforms = transforms.Compose([
    transforms.Resize([299, 299]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])
])

total_data = datasets.ImageFolder(data_dir,transform=train_transforms)

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
len(train_dataset), len(test_dataset)

(904, 226)

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True)

4、设置网络

Inception-A
在这里插入图片描述

'''---InceptionA---'''
class InceptionA(nn.Module):

    def __init__(self, in_channels, pool_features):
        super(InceptionA, self).__init__()

        self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)

        self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)

        self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)

Inception-B
在这里插入图片描述

'''---InceptionB---'''
class InceptionB(nn.Module):

    def __init__(self, in_channels, channels_7x7):
        super(InceptionB, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)

        c7 = channels_7x7

        self.branch7x7_1 = BasicConv2d (in_channels, c7, kernel_size=1)
        self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = BasicConv2d (c7, 192, kernel_size=(7, 1), padding=(3, 0))

        self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)

Inception-C
在这里插入图片描述

'''---InceptionC---'''
class InceptionC(nn.Module):
    def __init__(self, in_channels):
        super(InceptionC, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)

        self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)

Reduction-A
在这里插入图片描述

class ReductionA(nn.Module):

    def __init__(self, in_channels):
        super(ReductionA, self).__init__()
        self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d (96, 96, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)

Reduction-B
在这里插入图片描述

class ReductionB(nn.Module):
    def __init__(self, in_channels) :
        super(ReductionB, self).__init__()
        self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return torch.cat(outputs, 1)

辅助分支
在这里插入图片描述

class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()

        self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)
        self.conv1 = BasicConv2d(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001

    def forward(self, x):
        # 17 x 17 x 768
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # 5 × 5 × 768
        x = self.conv0(x)
        # 5 x 5 x 128
        x = self.conv1(x)
        # 1 x 1 x 768
        x = x.view(x.size(0), -1)
        # 768
        x = self.fc(x)
        #1000
        return x

完整模型搭建

import torch.nn.functional as F

class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

class InceptionV3(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=False, transform_input=False):
        super(InceptionV3, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
        self.Mixed_5b = InceptionA(192, pool_features=32)
        self.Mixed_5c = InceptionA(256, pool_features=64)
        self.Mixed_5d = InceptionA(288, pool_features=64)
        self.Mixed_6a = ReductionA(288)
        self.Mixed_6b = InceptionB(768, channels_7x7=128)
        self.Mixed_6c = InceptionB(768, channels_7x7=160)
        self.Mixed_6d = InceptionB(768, channels_7x7=160)
        self.Mixed_6e = InceptionB(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = InceptionAux(768, num_classes)
        self.Mixed_7a = ReductionB(768)
        self.Mixed_7b = InceptionC(1280)
        self.Mixed_7c = InceptionC(2048)
        self.fc = nn.Linear(2048, num_classes)

    def forward(self, x):
        if self.transform_input:
            x = x.clone()
            x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        # 299 x 299 x 3
        x = self.Conv2d_1a_3x3(x)
        # 149 x 149 x 32
        x = self.Conv2d_2a_3x3(x)
        # 147 x 147 x 32
        x = self.Conv2d_2b_3x3(x)
        # 147 x 147 × 64
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # 73 x 73 × 64
        x = self.Conv2d_3b_1x1(x)
        # 73 x 73 x 80
        x = self.Conv2d_4a_3x3(x)
        # 71x 71x 192
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        #35x35x 192
        x = self.Mixed_5b(x)
        # 35 × 35 x 256
        x = self.Mixed_5c(x)
        # 35x35x 288
        x = self.Mixed_5d(x)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)
        # 17× 17x768
        x = self.Mixed_6b(x)
        #17x17x768
        x = self.Mixed_6c(x)
        #17x17x768
        x = self.Mixed_6d(x)
        # 17× 17x768
        x = self.Mixed_6e(x)
        #  17x 17x768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)
        # 8 x 8 x 2048
        x = F.avg_pool2d(x, kernel_size=8)
        # 1 x 1 x 2048
        x = F.dropout(x, training=self.training)
        # 1x1x2048
        x = x.view(x.size(0), -1)
        # 2048
        x = self.fc(x)
        # 1000 (num classes)
        if self.training and self.aux_logits:
            return x, aux
        return x

5、查看网络

import torchsummary
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
model = InceptionV1().to(device)
torchsummary.summary(model, (3, 299, 299))

6、训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

7、测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

8、正式训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 50

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []


for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
                          epoch_test_acc*100, epoch_test_loss, lr))

print('Done')

输出结果:

Epoch: 1, Train_acc:73.0%, Train_loss:2.500, Test_acc:33.6%, Test_loss:8.539, Lr:1.00E-04
Epoch: 2, Train_acc:88.7%, Train_loss:0.499, Test_acc:85.8%, Test_loss:0.381, Lr:1.00E-04
........................................................................................
Epoch:50, Train_acc:97.6%, Train_loss:0.107, Test_acc:94.2%, Test_loss:0.184, Lr:1.00E-04
Done

9、模型评估

# coding=utf-8
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
# plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述


http://www.kler.cn/a/444675.html

相关文章:

  • Linux限制root 用户的远程登录(安全要求)
  • 经典问题---跳跃游戏II(贪心算法)
  • QT:QDEBUG输出重定向和命令行参数QCommandLineParser
  • uni-app开发商品详情页面实现
  • springboot452当代中国获奖的知名作家信息管理系统的设计与实现(论文+源码)_kaic
  • 一篇文章掌握WebService服务、工作原理、核心组件、主流框架
  • 如何裁剪图片多余部分?裁剪图片的几种简单尺寸方法
  • OpenCV相机标定与3D重建(23)用于在图像上绘制世界坐标系的三条轴函数drawFrameAxes()的使用
  • 由学习率跟batch size 关系 引起的海塞矩阵和梯度计算在训练过程中的应用思考
  • 浅谈文生图Stable Diffusion(SD)相关模型基础
  • 大屏项目使用css混合实现光源扫描高亮效果
  • 【docker】如何打包前端并运行
  • 点击数字层级从 admin.vue 跳转到 inviter-list.vue 组件
  • HCIA-Access V2.5_4_1_1路由协议基础_IP路由表
  • PLE网络中跷跷板现象和负迁移现象说明及其对应的解决方法
  • VUE小数位问题:JS当中toFixed()方法5不进位问题的处理
  • 物联网关:机床设备管理的智能变革“利器”
  • WebSocket vs SSE:实时通信技术的对比与选择
  • Vue2/3 生命周期详细对比与使用指南
  • 2009 ~ 2019 年 408【计算机网络】大题解析