TensorFlow_T11 优化器对比实验
目录
一、前言
二、前期准备
1、设置GPU
2、导入数据
三、数据预处理
1、加载数据
2、再次检查数据
3、配置数据集
4、数据可视化
四、构建网络
五、训练模型
六、模型评估
1、Loss与Accuracy图
编辑 2、模型评估
一、前言
- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
二、前期准备
1、设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
2、导入数据
import matplotlib.pyplot as plt
import warnings,pathlib
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
data_dir = "../data-2/data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
运行结果如下:
三、数据预处理
1、加载数据
设置基本的图片格式
batch_size = 16
img_height = 336
img_width = 336
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
运行结果如下:
可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称
class_names = train_ds.class_names
print(class_names)
2、再次检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
运行结果如下:
Image_batch
是形状的张量(16, 336, 336, 3)。这是一批形状336x336x3的8张图片(最后一维指的是彩色通道RGB);Label_batch
是形状(16,)的张量,这些标签对应16张图片;
3、配置数据集
-
shuffle() : 打乱数据
-
prefetch() :预取数据,加速运行
- cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE
def train_preprocessing(image,label):
return (image/255.0,label)
train_ds = (
train_ds.cache()
.shuffle(1000)
.map(train_preprocessing) # 这里可以设置预处理函数
# .batch(batch_size) # 在image_dataset_from_directory处已经设置了batch_size
.prefetch(buffer_size=AUTOTUNE)
)
val_ds = (
val_ds.cache()
.shuffle(1000)
.map(train_preprocessing) # 这里可以设置预处理函数
# .batch(batch_size) # 在image_dataset_from_directory处已经设置了batch_size
.prefetch(buffer_size=AUTOTUNE)
)
4、数据可视化
plt.figure(figsize=(10, 8)) # 图形的宽为10高为5
plt.suptitle("数据展示")
for images, labels in train_ds.take(1):
for i in range(15):
plt.subplot(4, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
# 显示图片
plt.imshow(images[i])
# 显示标签
plt.xlabel(class_names[labels[i]-1])
plt.show()
运行结果如下
四、构建网络
from tensorflow.keras.layers import Dropout,Dense,BatchNormalization
from tensorflow.keras.models import Model
def create_model(optimizer='adam'):
# 加载预训练模型
vgg16_base_model = tf.keras.applications.vgg16.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3),
pooling='avg')
for layer in vgg16_base_model.layers:
layer.trainable = False
X = vgg16_base_model.output
X = Dense(170, activation='relu')(X)
X = BatchNormalization()(X)
X = Dropout(0.5)(X)
output = Dense(len(class_names), activation='softmax')(X)
vgg16_model = Model(inputs=vgg16_base_model.input, outputs=output)
vgg16_model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return vgg16_model
model1 = create_model(optimizer=tf.keras.optimizers.Adam())
model2 = create_model(optimizer=tf.keras.optimizers.SGD())
model2.summary()
运行结果如下
这里使用了预训练的VGG16模型,并加载了在ImageNet数据集上的预训练权重,移除了分类部分,在后续将VGG16作为新模型的输入,并添加了对应的层及泛化措施,并实现了模型的编译过程。
五、训练模型
NO_EPOCHS = 50
history_model1 = model1.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)
history_model2 = model2.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)
运行结果如下
六、模型评估
1、Loss与Accuracy图
from matplotlib.ticker import MultipleLocator
plt.rcParams['savefig.dpi'] = 300 #图片像素
plt.rcParams['figure.dpi'] = 300 #分辨率
acc1 = history_model1.history['accuracy']
acc2 = history_model2.history['accuracy']
val_acc1 = history_model1.history['val_accuracy']
val_acc2 = history_model2.history['val_accuracy']
loss1 = history_model1.history['loss']
loss2 = history_model2.history['loss']
val_loss1 = history_model1.history['val_loss']
val_loss2 = history_model2.history['val_loss']
epochs_range = range(len(acc1))
plt.figure(figsize=(16, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc1, label='Training Accuracy-Adam')
plt.plot(epochs_range, acc2, label='Training Accuracy-SGD')
plt.plot(epochs_range, val_acc1, label='Validation Accuracy-Adam')
plt.plot(epochs_range, val_acc2, label='Validation Accuracy-SGD')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss1, label='Training Loss-Adam')
plt.plot(epochs_range, loss2, label='Training Loss-SGD')
plt.plot(epochs_range, val_loss1, label='Validation Loss-Adam')
plt.plot(epochs_range, val_loss2, label='Validation Loss-SGD')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.show()
可视化结果如下
2、模型评估
def test_accuracy_report(model):
score = model.evaluate(val_ds, verbose=0)
print('Loss function: %s, accuracy:' % score[0], score[1])
test_accuracy_report(model2)
运行结果如下
👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!
👏想了解更多统计学、数据分析、数据开发、机器学习算法、深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!