【Mac】安装 PaddleOCR
环境:Mac M1 芯片
1、安装
1.1 安装 Anaconda
Anaconda 安装较为简单,直接在 Anaconda 官网 下载pkg文件,根据向导提示完成安装。
Anaconda 用于搭建 Python 虚拟环境,目的是为了避免与之前环境安装库的版本冲突,另外 paddle 对Python 的版本也是有要求的。
创建并激活虚拟环境:
zs@Mac ~ % conda create -y -n paddle python=3.12
zs@Mac ~ % conda activate paddle
1.2 安装 paddlepaddle
在 官网 获取安装命令:
(paddle) zs@Mac ~ % conda install paddlepaddle==3.0.0b2 -c paddle
验证:
(paddle) zs@Mac ~ % python
>>> import paddle
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
I1219 22:02:16.993297 4123495424 interpretercore.cc:237] New Executor is Running.
I1219 22:02:17.038717 4123495424 interpreter_util.cc:518] Standalone Executor is Used.
PaddlePaddle works well on 1 CPU.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
可能报错:
-
TypeError: __array__(): incompatible function arguments. The following argument types are supported
paddle与numpy的版本不兼容,通过降低numpy版本解决。
1.3 安装 PaddleOCR
安装:
(paddle) zs@Mac ~ % pip install -i https://pypi.tuna.tsinghua.edu.cn/simple paddleocr --user
安装依赖:先将 项目依赖 拉下来,然后执行以下命令:
(paddle) zs@Mac ~ % pip install -r requirements.txt
2、Paddle 升级
在 官网快速开始界面复制命令,直接执行,pip、conda 等会自动处理依赖关系,并安装或升级到指定的版本。
3、测试
3.1 命令行
paddleocr --image_dir /path/image.jpg
3.2 脚本测试
编写脚本 test.py
:
from paddleocr import PaddleOCR
# 创建识别器
ocr = PaddleOCR(use_angle_cls=True, lang='ch')
img_path = '../mv/1.jpg'
# 只需运行一次即可下载模型并将其加载到内存中
result = ocr.ocr(img_path, cls=True)
for idx in range(len(result)):
res = result[idx]
for line in res:
print(line)
终端执行上述脚本:
(paddle) zs@Mac ~ % python test.py
3.3 警告解决
No ccache found
提示在当前环境中没有找到 ccache。ccache 是一个编译缓存工具,可以显著加快重新编译的速度。如果不介意重新编译所有源文件的时间,可以选择忽略这个警告。如果希望提高编译速度,可以按照提示安装 ccache。/opt/anaconda3/envs/paddle/lib/python3.12/site-packages/paddle/utils/cpp_extension/extension_utils.py:686: UserWarning: No ccache found. Please be aware that recompiling all source files may be required. You can download and install ccache from: https://github.com/ccache/ccache/blob/master/doc/INSTALL.md warnings.warn(warning_message)
conda install -c conda-forge ccache
Setuptools is replacing distutils
这个警告表示 setuptools 正在替换 distutils,并且在未来这种替换可能会失败,setuptools项目中建议通过更新 setuptools 来解决。/root/miniconda3/envs/PaddleSpeech/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils. Support for replacing an already imported distutils is deprecated. In the future, this condition will fail. Register concerns at https://github.com/pypa/setuptools/issues/new?template=distutils-deprecation.yml warnings.warn(
python -m pip install --upgrade setuptools
pip is being invoked by an old script wrapper
这个警告表示您正在使用的 pip 是通过一个旧的脚本包装器调用的,这在未来可能会导致问题。建议使用 python -m pip 命令来调用 pip。WARNING: pip is being invoked by an old script wrapper. This will fail in a future version of pip. Please see https://github.com/pypa/pip/issues/5599 for advice on fixing the underlying issue. To avoid this problem you can invoke Python with '-m pip' instead of running pip directly.
5、图片太长导致无法识别
将图片进行裁剪
import os
from PIL import Image
def crop_image(path, rows, cols, folder):
image = Image.open(path)
name, extension = os.path.splitext(os.path.basename(path))
width, height = image.size
img_width = width // cols
img_height = height // rows
for row in range(rows):
for col in range(cols):
box = (col * img_width, row * img_height, (col + 1) * img_width, (row + 1) * img_height)
cropped_image = image.crop(box)
output_file = f"{folder}/{name}_{row}_{col}{extension}"
cropped_image.save(output_file)
# 裁剪图像:图片地址、裁剪行数、裁剪列数、裁剪结果保存路径
crop_image("../photo/example.jpg", 3, 1, "../photo")
8、PaddleOCR模型
模型在本地存放默认地址:/Users/zs/.paddleocr/whl
(paddle) zs@Mac ~ % ls /Users/zs/.paddleocr/whl
cls det rec
- det(Detection):
这个文件夹包含用于文本检测的模型。文本检测是 OCR 流程的第一步,它的目的是在图像中找到文本的位置。 - cls(Classification):
这个文件夹包含用于文本方向分类的模型(在某些版本的 PaddleOCR 中可能不存在或不是必需的)。文本方向分类用于确定检测到的文本的方向,以便后续能够正确地识别文本内容。 - rec(Recognition):
这个文件夹包含用于文本识别的模型。文本识别是 OCR 流程的最后一步,它的目的是将检测到的文本图像转换为可编辑的文本内容。
如需更改模型缓存目录,只需设置相应的变量环境即可。
默认下载目录 | 设置环境变量 |
---|---|
paddlehub | HUB_HOME |
paddlenlp | PPNLP_HOME |
paddlespeech | PPSPEECH_HOME |
paddleaudio | PPAUDIO_HOME |
paddleocr | PPOCR_HOME |
paddledetection | PPDETECTION_HOME |
paddlegan | PPGAN_HOME |
paddleseg | PPSEG_HOME |
paddleclas | PPCLAS_HOME |
paddlerec | PPREC_HOME |
9、PaddleOCR模型推理参数
在使用PaddleOCR进行模型推理时,可以自定义修改参数,来修改模型、数据、预处理、后处理等内容,详细的参数解释如下所示。
9.1 全局信息
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
image_dir | str | 无,必须显式指定 | 图像或者文件夹路径 |
page_num | int | 0 | 当输入类型为pdf文件时有效,指定预测前面page_num页,默认预测所有页 |
vis_font_path | str | “./doc/fonts/simfang.ttf” | 用于可视化的字体路径 |
drop_score | float | 0.5 | 识别得分小于该值的结果会被丢弃,不会作为返回结果 |
use_pdserving | bool | False | 是否使用Paddle Serving进行预测 |
warmup | bool | False | 是否开启warmup,在统计预测耗时的时候,可以使用这种方法 |
draw_img_save_dir | str | “./inference_results” | 系统串联预测OCR结果的保存文件夹 |
save_crop_res | bool | False | 是否保存OCR的识别文本图像 |
crop_res_save_dir | str | “./output” | 保存OCR识别出来的文本图像路径 |
use_mp | bool | False | 是否开启多进程预测 |
total_process_num | int | 6 | 开启的进程数,use_mp为True时生效 |
process_id | int | 0 | 当前进程的id号,无需自己修改 |
benchmark | bool | False | 是否开启benchmark,对预测速度、显存占用等进行统计 |
save_log_path | str | “./log_output/” | 开启benchmark时,日志结果的保存文件夹 |
show_log | bool | True | 是否显示预测中的日志信息 |
use_onnx | bool | False | 是否开启onnx预测 |
9.2 预测引擎相关
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
use_gpu | bool | True | 是否使用GPU进行预测 |
ir_optim | bool | True | 是否对计算图进行分析与优化,开启后可以加速预测过程 |
use_tensorrt | bool | False | 是否开启tensorrt |
min_subgraph_size | int | 15 | tensorrt中最小子图size,当子图的size大于该值时,才会尝试对该子图使用trt engine计算 |
precision | str | fp32 | 预测的精度,支持fp32, fp16, int8 3种输入 |
enable_mkldnn | bool | True | 是否开启mkldnn |
cpu_threads | int | 10 | 开启mkldnn时,cpu预测的线程数 |
9.3 文本检测模型相关
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
det_algorithm | str | “DB” | 文本检测算法名称,目前支持DB, EAST, SAST, PSE, DB++, FCE |
det_model_dir | str | xx | 检测inference模型路径 |
det_limit_side_len | int | 960 | 检测的图像边长限制 |
det_limit_type | str | “max” | 检测的边长限制类型,目前支持min和max,min表示保证图像最短边不小于det_limit_side_len,max表示保证图像最长边不大于det_limit_side_len |
- DB算法相关参数如下:
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
det_db_thresh | float | 0.3 | DB输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点 |
det_db_box_thresh | float | 0.6 | 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域 |
det_db_unclip_ratio | float | 1.5 | Vatti clipping算法的扩张系数,使用该方法对文字区域进行扩张 |
max_batch_size | int | 10 | 预测的batch size |
use_dilation | bool | False | 是否对分割结果进行膨胀以获取更优检测效果 |
det_db_score_mode | str | “fast” | DB的检测结果得分计算方法,支持fast和slow,fast是根据polygon的外接矩形边框内的所有像素计算平均得分,slow是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
- EAST算法相关参数如下:
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
det_east_score_thresh | float | 0.8 | EAST后处理中score map的阈值 |
det_east_cover_thresh | float | 0.1 | EAST后处理中文本框的平均得分阈值 |
det_east_nms_thresh | float | 0.2 | EAST后处理中nms的阈值 |
- SAST算法相关参数如下:
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
det_sast_score_thresh | float | 0.5 | SAST后处理中的得分阈值 |
det_sast_nms_thresh | float | 0.5 | SAST后处理中nms的阈值 |
det_box_type | str | quad | 是否多边形检测,弯曲文本场景(如Total-Text)设置为’poly’ |
- PSE算法相关参数如下:
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
det_pse_thresh | float | 0.0 | 对输出图做二值化的阈值 |
det_pse_box_thresh | float | 0.85 | 对box进行过滤的阈值,低于此阈值的丢弃 |
det_pse_min_area | float | 16 | box的最小面积,低于此阈值的丢弃 |
det_box_type | str | “quad” | 返回框的类型,quad:四点坐标,poly: 弯曲文本的所有点坐标 |
det_pse_scale | int | 1 | 输入图像相对于进后处理的图的比例,如640640的图像,网络输出为160160,scale为2的情况下,进后处理的图片shape为320*320。这个值调大可以加快后处理速度,但是会带来精度的下降 |
9.4 文本识别模型相关
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
rec_algorithm | str | “CRNN” | 文本识别算法名称,目前支持CRNN, SRN, RARE, NETR, SAR, ViTSTR, ABINet, VisionLAN, SPIN, RobustScanner, SVTR, SVTR_LCNet |
rec_model_dir | str | 无,如果使用识别模型,该项是必填项 | 识别inference模型路径 |
rec_image_shape | str | “3,48,320” | 识别时的图像尺寸 |
rec_batch_num | int | 6 | 识别的batch size |
max_text_length | int | 25 | 识别结果最大长度,在SRN中有效 |
rec_char_dict_path | str | “./ppocr/utils/ppocr_keys_v1.txt” | 识别的字符字典文件 |
use_space_char | bool | True | 是否包含空格,如果为True,则会在最后字符字典中补充空格字符 |
9.5 端到端文本检测与识别模型相关
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
e2e_algorithm | str | “PGNet” | 端到端算法名称,目前支持PGNet |
e2e_model_dir | str | 无,如果使用端到端模型,该项是必填项 | 端到端模型inference模型路径 |
e2e_limit_side_len | int | 768 | 端到端的输入图像边长限制 |
e2e_limit_type | str | “max” | 端到端的边长限制类型,目前支持min, max,min表示保证图像最短边不小于e2e_limit_side_len,max表示保证图像最长边不大于e2e_limit_side_len |
e2e_pgnet_score_thresh | float | 0.5 | 端到端得分阈值,小于该阈值的结果会被丢弃 |
e2e_char_dict_path | str | “./ppocr/utils/ic15_dict.txt” | 识别的字典文件路径 |
e2e_pgnet_valid_set | str | “totaltext” | 验证集名称,目前支持totaltext, partvgg,不同数据集对应的后处理方式不同,与训练过程保持一致即可 |
e2e_pgnet_mode | str | “fast” | PGNet的检测结果得分计算方法,支持fast和slow,fast是根据polygon的外接矩形边框内的所有像素计算平均得分,slow是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
9.6 方向分类器模型相关
参数名称 | 类型 | 默认值 | 含义 |
---|---|---|---|
use_angle_cls | bool | False | 是否使用方向分类器 |
cls_model_dir | str | 无,如果需要使用,则必须显式指定路径 | 方向分类器inference模型路径 |
cls_image_shape | str | “3,48,192” | 预测尺度 |
label_list | list | [‘0’, ‘180’] | class id对应的角度值 |
cls_batch_num | int | 6 | 方向分类器预测的batch size |
cls_thresh | float | 0.9 | 预测阈值,模型预测结果为180度,且得分大于该阈值时,认为最终预测结果为180度,需要翻转 |
20、资料
- Paddle官网
- mac m1 m2 安装 paddlepaddle paddleocr库,避坑指南