当前位置: 首页 > article >正文

‌Elasticsearch(es)自定义分词器,根据特殊符号分词或分词后保留特殊符号

1.需求:

现在有个原始文本:"电阻@CAL-CHIP@55@55w@±1%@330Ω@1/8W@55℃@xiaolong(电脑)@3000HF",如果使用官方分词器,分词之后的结果如下:

{
    "tokens": [
        {
            "token": "电",
            "start_offset": 0,
            "end_offset": 1,
            "type": "<IDEOGRAPHIC>",
            "position": 0
        },
        {
            "token": "阻",
            "start_offset": 1,
            "end_offset": 2,
            "type": "<IDEOGRAPHIC>",
            "position": 1
        },
        {
            "token": "cal",
            "start_offset": 3,
            "end_offset": 6,
            "type": "<ALPHANUM>",
            "position": 2
        },
        {
            "token": "chip",
            "start_offset": 7,
            "end_offset": 11,
            "type": "<ALPHANUM>",
            "position": 3
        },
        {
            "token": "55",
            "start_offset": 12,
            "end_offset": 14,
            "type": "<NUM>",
            "position": 4
        },
        {
            "token": "55w",
            "start_offset": 15,
            "end_offset": 18,
            "type": "<ALPHANUM>",
            "position": 5
        },
        {
            "token": "1",
            "start_offset": 20,
            "end_offset": 21,
            "type": "<NUM>",
            "position": 6
        },
        {
            "token": "330ω",
            "start_offset": 23,
            "end_offset": 27,
            "type": "<ALPHANUM>",
            "position": 7
        },
        {
            "token": "1",
            "start_offset": 28,
            "end_offset": 29,
            "type": "<NUM>",
            "position": 8
        },
        {
            "token": "8w",
            "start_offset": 30,
            "end_offset": 32,
            "type": "<ALPHANUM>",
            "position": 9
        },
        {
            "token": "55",
            "start_offset": 33,
            "end_offset": 35,
            "type": "<NUM>",
            "position": 10
        },
        {
            "token": "xiaolong",
            "start_offset": 37,
            "end_offset": 45,
            "type": "<ALPHANUM>",
            "position": 11
        },
        {
            "token": "电",
            "start_offset": 46,
            "end_offset": 47,
            "type": "<IDEOGRAPHIC>",
            "position": 12
        },
        {
            "token": "脑",
            "start_offset": 47,
            "end_offset": 48,
            "type": "<IDEOGRAPHIC>",
            "position": 13
        },
        {
            "token": "3000hf",
            "start_offset": 50,
            "end_offset": 56,
            "type": "<ALPHANUM>",
            "position": 14
        }
    ]
}

可以看到,这个分词之后的结果是以:@-±%/ 这些符号为界限把词给分开,并且遇到中文的时候,分词的结果是要逐字分词,现在我需要实现的效果是:原来分词的效果不变,只是不能把 ℃ 这个符号给去掉,也就是说理想的结果是这样的

 ........
{
            "token": "8w",
            "start_offset": 30,
            "end_offset": 32,
            "type": "<ALPHANUM>",
            "position": 9
        },
        {
            "token": "55℃",
            "start_offset": 33,
            "end_offset": 35,
            "type": "<NUM>",
            "position": 10
        },
        {
            "token": "xiaolong",
            "start_offset": 37,
            "end_offset": 45,
            "type": "<ALPHANUM>",
            "position": 11
        },
.....

2.通过自定义分词器来实现:

{
  "settings": {
    "analysis": {
      "analyzer": {
        "custom_analyzer": {
          "type": "custom",
          "tokenizer": "combined_tokenizer",
          "char_filter": ["chinese_space_char_filter"]
        }
      },
      "tokenizer": {
        "combined_tokenizer": {
          "type": "pattern",
          "pattern": [
            "-|@|,|!|?|=|/|±| |(|)|?"
          ]
        }
      },
      "char_filter": {
        "chinese_space_char_filter": {
          "type": "pattern_replace",
          "pattern": "([\\u4e00-\\u9fa5])",
          "replacement": " $1 "
        }
      }
    }
  },
  "mappings": {
      "properties": {
        "parameterSplicing": {
          "type": "text",
          "analyzer": "custom_analyzer",
          "index": true,
          "store": false
        }
      }
    }

}

通过这个来作为分词器,然后分词效果如下:

{
    "analyzer": "custom_analyzer",
    "text": "电阻@CAL-CHIP@55@55w@±1%@330Ω@1/8W@55℃@xiaolong(小龙牌电脑)@3000HF"
}



分词结果:
{
    "tokens": [
        {
            "token": "电",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 0
        },
        {
            "token": "阻",
            "start_offset": 1,
            "end_offset": 1,
            "type": "word",
            "position": 1
        },
        {
            "token": "CAL",
            "start_offset": 3,
            "end_offset": 6,
            "type": "word",
            "position": 2
        },
        {
            "token": "CHIP",
            "start_offset": 7,
            "end_offset": 11,
            "type": "word",
            "position": 3
        },
        {
            "token": "55",
            "start_offset": 12,
            "end_offset": 14,
            "type": "word",
            "position": 4
        },
        {
            "token": "55w",
            "start_offset": 15,
            "end_offset": 18,
            "type": "word",
            "position": 5
        },
        {
            "token": "1%",
            "start_offset": 20,
            "end_offset": 22,
            "type": "word",
            "position": 6
        },
        {
            "token": "330Ω",
            "start_offset": 23,
            "end_offset": 27,
            "type": "word",
            "position": 7
        },
        {
            "token": "1",
            "start_offset": 28,
            "end_offset": 29,
            "type": "word",
            "position": 8
        },
        {
            "token": "8W",
            "start_offset": 30,
            "end_offset": 32,
            "type": "word",
            "position": 9
        },
        {
            "token": "55℃",
            "start_offset": 33,
            "end_offset": 36,
            "type": "word",
            "position": 10
        },
        {
            "token": "xiaolong",
            "start_offset": 37,
            "end_offset": 45,
            "type": "word",
            "position": 11
        },
        {
            "token": "小",
            "start_offset": 46,
            "end_offset": 46,
            "type": "word",
            "position": 12
        },
        {
            "token": "龙",
            "start_offset": 47,
            "end_offset": 47,
            "type": "word",
            "position": 13
        },
        {
            "token": "牌",
            "start_offset": 48,
            "end_offset": 48,
            "type": "word",
            "position": 14
        },
        {
            "token": "电",
            "start_offset": 49,
            "end_offset": 49,
            "type": "word",
            "position": 15
        },
        {
            "token": "脑",
            "start_offset": 50,
            "end_offset": 50,
            "type": "word",
            "position": 16
        },
        {
            "token": "3000HF",
            "start_offset": 53,
            "end_offset": 59,
            "type": "word",
            "position": 17
        }
    ]
}

可以看到,这个 55℃ 被完整的保留下来了, 

3.解释:

1. settings 部分

  • analysis 节点:这是整个分析器相关配置的核心节点,用于定义各种分析组件,像分析器(analyzer)、分词器(tokenizer)以及字符过滤器(char_filter)等。
    • analyzer 节点(自定义分析器定义)
      • custom_analyzer:这是自定义的一个分析器名称,它的类型被指定为 custom,意味着需要自行组合各种组件(分词器、字符过滤器等)来构建其功能。
      • 组件配置:它使用了名为 combined_tokenizer 的分词器,并且关联了一个名为 chinese_space_char_filter 的字符过滤器。通过这样的搭配,文本在经过这个分析器处理时,会先由 combined_tokenizer 进行初步的分词操作,然后再经过 chinese_space_char_filter 做进一步的文本处理(后文会详细介绍具体处理内容)。
    • tokenizer 节点(分词器定义)
      • combined_tokenizer:具体定义了一个名为 combined_tokenizer 的分词器,其类型是 pattern,也就是基于正则表达式模式来进行分词操作。
      • pattern 配置:其 pattern 属性值为 -|@|,|!|?|=|/|±| |(|)|?,这是一个正则表达式模式,含义是以 “或” 的关系罗列了一系列用于分词的标识符号。具体来说,文本中一旦出现 -@!?=/±、空格、() 这些符号中的任意一个,分词器就会在该符号出现的位置将文本分割成不同的词项。例如,对于文本 "电阻@CAL-CHIP@0805@±1%@330Ω@1/8W@55℃" ,就会依据这些符号进行相应的拆分,像根据 @ 把各个不同部分拆分开等。
    • char_filter 节点(字符过滤器定义)
      • chinese_space_char_filter:定义了一个字符过滤器,类型为 pattern_replace,主要用于对文本中的中文字符进行特定处理。
      • pattern 和 replacement 配置pattern 属性值为 ([\\u4e00-\\u9fa5]),这是利用 Unicode 编码范围来匹配任意单个中文字符,并且使用括号进行了分组捕获;replacement 属性值为 $1,表示将匹配到的单个中文字符(也就是前面分组捕获的内容)前后都添加一个空格。这样做的目的是在分词之后,对于文本里出现的中文部分,每个中文字符都能以添加前后空格的形式存在,方便后续可能的进一步文本处理或者索引、查询匹配等操作,使其在文本结构上更清晰、便于区分。



在这里需要重点说明一下,之所以遇到中文可以逐字分词,那是因为通过字符过滤器,在分词之前把中文的每一个字前后都加上了空格,然后在分词器里面有定义:遇到空格就进行分词,所以就可以做到分词之后的效果是逐字分词


http://www.kler.cn/a/448523.html

相关文章:

  • 重拾设计模式--观察者模式
  • 【JAVA】JAVA接口公共返回体ResponseData封装
  • Leetcode中最常用的Java API——util包
  • 使用 AI 辅助开发一个开源 IP 信息查询工具:一
  • Nginx - 负载均衡及其配置(Balance)
  • MySQL 主从复制与高可用
  • 计算机基础知识——数据结构与算法(五)(山东省大数据职称考试)
  • Redis——缓存预热+缓存雪崩+缓存击穿+缓存穿透
  • python学opencv|读取图像(十八)使用cv2.line创造线段
  • js导出Excel(图片大小,数据转换,导出后面添加现在的时间 )
  • Vue的响应式基础
  • Go 语言并发实战:利用协程处理多个接口进行数据融合
  • 常耀斌:深度学习和大模型原理与实战(深度好文)
  • 【漫话机器学习系列】012.深度学习(Deep Learning)基础
  • Webpack的打包过程/打包原理/构建流程?
  • Unity Shader学习日记 part 1 基础知识
  • 广义正态分布优化算法(GNDO)Generalized Normal Distribution Optimization
  • LeetCode 力扣 热题 100道(二十)三数之和(C++)
  • Unity 6 Preview(预览版)新增功能
  • windows下srs流媒体服务器使用ffmpeg推流
  • 鸿蒙项目云捐助第十八讲云捐助我的页面下半部分的实现
  • c# iis 解决跨域问题
  • 对象克隆与单例模式的实现
  • 硬件工程师面试题 11-20
  • 【WRF教程第3.6期】预处理系统 WPS 详解:以4.5版本为例
  • 使用插件时要注意