当前位置: 首页 > article >正文

Hadoop集群(HDFS集群、YARN集群、MapReduce​计算框架)

一、 简介

Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。

其中三大核心组件HDFS存储分布式文件存储、YARN分布式资源管理、MapReduce分布式计算。

二、工作原理

2.1 HDFS集群

Web访问地址:http://hadoop1:9870

HDFS由NameNode(主节点)、SecondaryNameNode(辅助节点)、DataNode(从节点)构成,

其中NameNode负责管理整个HDFS集群,SecondaryNameNode辅助NameNode管理元数据,DataNode负责存储实际的数据块(一个block块默认大小128MB)和对数据块的读、写操作。

2.1.1 block数据块

  • 基本存储单位(一般64M)
  • 一个大文件会被拆分成多个block块,然后存储到不通机器上
  • 每块会备份到其他机器上,保证数据安全性,防止数据丢失(默认备份3份)。

2.1.2 NameNode

  • 管理文件系统命名空间和客户端对文件访问
  • 保存文件具体信息(文件信息、文件拆分block块信息、以及block和DataNode的信息)
  • 接收用户请求

2.1.3 DataNode

  • 保存具体的block数据
  • 负责数据的读写操作和复制操作
  • 向NameNode报告当前存储或者修改的数据信息
  • DataNode之间进行相互通信,复制数据块

2.1.4 Secondary NameNode

  • 定时与NameNode进行同步(合并fsimage和edits文件)
  • 当NameNode失效时,需要手工将其设置成主机

2.1.5 文件写入步骤

    1. Client(客户端)请求namenode保存文件。
    2. NameNode接收到客户端请求后, 会校验客户端针对该文件是否有写的权利,文件是否存在,校验通过后告知客户端可以上传。
    3. 接收到可以上传的指令后, 客户端会按照128MB(默认)对文件进行切块。
    4. Client(客户端)再次请求namenode, 第1个Block块的上传位置。
    5. namenode会根据副本机制, 负载均衡, 机架感知原理及网络拓扑图, 返回给客户端存储该Block块的DataNode列表。
        例如: node1, node2, node3;
    6. Client(客户端)会先连接就近的datanode机器, 然后依次和其他的datanode进行连接, 形成传输管道(Pipeline);
    7. 采用数据报包(DataPacket)的形式传输数据, 每个包的大小不超过64KB, 并建立反向应答机制(ACK机制);
    8. 具体的上传动作: node1 -> node2 -> node3,  ACK反向应答机制: node3 => node2 => node1。
    9. 重复上述的步骤, 直至第1个Block块上传完毕。
   10. 第一个Bloc上传完毕客户端(Client)重新请求第二个Block的上传位置, 重复上述动作, 直至所有的Block块传输完毕。

至此, HDFS写数据流程结束。

2.1.6 文件读取步骤

 1. Client(客户端)请求namenode, 读取文件。
 2. NameNode校验该客户端是否有读权限, 及该文件是否存在, 校验成功后, 会返回给客户端该文件的块信息。
        例如:
            block1: node1, node2, node5
            block2: node3, node6, node8
            block3: node2, node5, node6     这些地址都是鲜活的;
            ......
    3. Client(客户端)会连接上述的机器(节点), 并行的从中读取块的数据。
    4. Client(客户端)读取完毕后, 会循环NameNode获取剩下所有的(或者部分的块信息), 并行读取, 直至所有数据读取完毕。
    5. Client(客户端)根据Block块编号, 把多个Block块数据合并成最终文件即可。

2.1.7 数据备份

  1. NameNode负责管理block块的复制,它周期性地接收集群中所有DataNode的心跳数据包和Blockreport。心跳包表示DataNode正常工作,Blockreport描述了该DataNode上所有的block组成的列表。
  2. HDFS采用一种称为rack-aware的策略来决定备份数据的存放。通过一个称为Rack Awareness的过程,NameNode决定每个DataNode所属rack id。缺省情况下,一个block块会有三个备份,一个在NameNode指定的DataNode上,一个在指定DataNode非同一rack的DataNode上,一个在指定DataNode同一rack的DataNode上。这种策略综合考虑了同一rack失效、以及不同rack之间数据复制性能问题。
  3. 为了降低整体的带宽消耗和读取延时,HDFS会尽量读取最近的副本。如果在同一个rack上有一个副本,那么就读该副本。如果一个HDFS集群跨越多个数据中心,那么将首先尝试读本地数据中心的副本。

2.1.8 HDFS工作原理

1、NameNode初始化时会产生一个edits文件和一个fsimage文件。
2、随着edits文件不断增大,当达到设定的阀值时(1个小时或写入100万次),SecondaryNameNode把edits文件和fsImage文件复制到本地,同时NameNode会产生一个新的edits文件替换掉旧的edits文件,这样以保证数据不会出现冗余。
3、SecondaryNameNode拿到这两个文件后,会在内存中进行合并成一个fsImage.ckpt的文件(这个过程称为checkpoint),合并完成后,再将fsImage.ckpt文件推送给NameNode。
4、NameNode文件拿到fsImage.ckpt文件后,会将旧的fsimage文件替换掉(并不会立刻替换,而是达到一定阈值后被替换掉),并且改名成fsimage文件。

通过以上几步则完成了edits和fsimage文件的合并,依此不断循环,从而到达保证元数据的正确性。在紧急情况下, SecondaryNameNode可以用来恢复namenode的元数据。

2.2 YARN集群

Web访问地址:http://hadoop1:8088

YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作平台,而Mapreduce等运算程序相当于运行在操作系统之上的应运程序。

YARN组成由ResourceManager、AppMaster进程、NodeManager组成

2.2.1 ResourceManager(主节点)

ResourceManager是master上的进程,负责整个分布式系统的资源管理和调度。会处理来自client端的请求(包括提交作业/杀死作业);启动/监控Application Master;监控NodeManager的情况,比如可能挂掉的NodeManager。

2.2.2 NodeManager(从节点)

负责接收并执行ResourceManager分配的计算任务。相对应的,NodeManager时处在slave节点上的进程,他只负责当前slave节点的资源管理和调度,以及task的运行。他会定期向ResourceManager回报资源/Container的情况(heartbeat);接受来自ResourceManager对于Container的启停命令。

2.2.3 AppMaster进程

每一个提交到集群的作业都会有一个与之对应的Application Master来负责应用程序的管理。他负责进行数据切分;为当前应用程序向ResourceManager去申请资源(也就是Container),并分配给具体的任务;与NodeManager通信,用来启停具体的任务,任务运行在Container中;而任务的监控和容错也是由Application Master来负责的。

        1个计算任务=1个AppMaster进程

        由该AppMaster进程来监控和管理该计算任务

2.2.4 Container

它包含了Application Master向ResourceManager申请的计算资源,比如说CPU/内存的大小,以及任务运行所需的环境变量和队任务运行情况的描述。

2.3  MapReduce工作原理

MapReduce是一种分布式计算框架。MR的执行流程:

  1. MR任务分为MapTask任务 ReduceTask任务两部分, 其中MapTask任务负责:分; ReduceTask任务负责:合。

  •  1个切片(默认128MB) = 1个MapTask任务 = 1个分好区, 排好序, 规好约的磁盘文件;

    2. 先对文件进行切片, 每个切片对应1个MapTask任务, 任务内部会逐行读取数据, 交由MapTask任务来处理。
    3. MapTask对数据进行分区,排序,规约处理后, 会将数据放到1个 环形缓冲区中(默认大小: 100MB, 溢写比: 0.8), 达到80MB就会触发溢写线程。
    4. 溢写线程会将环形缓冲区中的结果写到磁盘的小文件中, 当MapTask任务结束的时候, 会对所有的小文件(10个/次)合并, 形成1个大的磁盘文件。
    5. ReduceTask任务会开启拷贝线程, 从上述的各个结果文件中, 拉取属于自己分区的数据, 进行分组、统计、聚合。
    6. ReduceTask将处理后的结果, 写到结果文件中;

  • 1个分区 = 1个ReduceTask任务 = 1个结果文件;

2.4  三者之间的关系

 客户端Client提交任务到资源管理器(ResourceManager),资源管理器接收到任务之后去NodeManager节点开启任务(ApplicationMaster), ApplicationMaster向ResourceManager申请资源, 若有资源ApplicationMaster负责开启任务即MapTask。开始干活了即分析任务,每个map独立工作,各自负责检索各自对应的DataNode,将结果记录到HDFS, DataNode负责存储,NameNode负责记录,2nn负责备份部分数据。

 


http://www.kler.cn/a/449717.html

相关文章:

  • Redis+注解实现限流机制(IP、自定义等)
  • Docker搭建kafka环境
  • 定位方式:css
  • [Unity]Unity集成NuGet-连接mysql时的发现
  • 各种电机原理介绍
  • 数据流图和流程图的区别
  • c++------------------函数
  • SQLMAP
  • 软件测试之单功能测试以及提取测试数据
  • Excel中index()函数
  • 【c++】使用sqlite3读写数据库
  • Nginx整合Lua脚本
  • istio配置重复的svc报错
  • 基于Spring Boot的个人财务系统
  • 数据结构:栈(顺序栈)
  • 本机(Windows)和服务器(Linux)之间传输文件的命令
  • AW36518芯片手册解读(3)
  • Elasticsearch-分词器详解
  • Java爬虫获取1688关键字接口详细解析
  • 前端模拟接口工具-json-server
  • Oracle:数据库的顶尖认证
  • redis常用数据类型介绍
  • MacroSan 2500_24A配置
  • 旅游推荐系统设计与实现 计算机毕业设计 有源码 P10090
  • Vue3自定义hook函数
  • Calcite Web 项目常见问题解决方案