当前位置: 首页 > article >正文

P7——pytorch马铃薯病害识别

  •   🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

1.检查GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore")            
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

​​

2.查看数据

import os,PIL,random,pathlib

data_dir='data/PotatoPlants'
data_path=pathlib.Path(data_dir)
data_paths=list(data_path.glob('*'))
classNames=[str(path).split('\\')[2] for path in data_paths]
classNames

​​​​​​

3.划分数据集

train_transforms=transforms.Compose([
    transforms.Resize([224,224]),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.482,0.456,0.406],
        std=[0.229,0.224,0.225]
    )
])
test_transforms=transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.482,0.456,0.406],
        std=[0.229,0.224,0.225]
    )
])
total_data=datasets.ImageFolder("data/PotatoPlants/",transform=train_transforms)
total_data

total_data.class_to_idx

train_size=int(0.8*len(total_data))
test_size=len(total_data)-train_size
train_data,test_data=torch.utils.data.random_split(total_data,[train_size,test_size])
train_data,test_data

batch_size=32
train_dl=torch.utils.data.DataLoader(train_data,batch_size,shuffle=True,num_workers=1)
test_dl=torch.utils.data.DataLoader(test_data,batch_size,shuffle=True,num_workers=1)

for X,y in train_dl:
    print(X.shape)
    print(y.shape)
    break

​​​

4.创建模型

import torch.nn.functional as F

class vgg16(nn.Module):
    def __init__(self):
        super(vgg16, self).__init__()
        # 卷积块1
        self.block1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块2
        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块3
        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块4
        self.block4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块5
        self.block5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
      

        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=512*7*7, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=3)
        )

    def forward(self, x):

        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = vgg16().to(device)
model

import torchsummary as summary
summary.summary(model, (3, 224, 224))


​​​​

5.动态调整学习率函数

#调用官方动态学习率接口
learning_rate = 1e-4
lambda1=lambda epoch:0.92**(epoch//4)
optimizer=torch.optim.SGD(model.parameters(),lr=learning_rate)
scheduler=torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1)

6.编译及训练模型

def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)
    train_loss,train_acc=0,0
    for X,y in dataloader:
        X,y =X.to(device),y.to(device)
        pred=model(X)
        loss=loss_fn(pred,y)
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        train_loss+=loss.item()
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
    train_acc/=size
    train_loss/=num_batches
    return train_acc,train_loss

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)
    test_loss,test_acc=0,0
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
    test_acc/=size
    test_loss/=num_batches
    return test_acc,test_loss

import copy
optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss()
import copy
loss_fn=nn.CrossEntropyLoss()
epochs=5
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]
best_acc=0
for epoch in range(epochs):
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,optimizer)
    #更新学习率
    scheduler.step()
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)

    if epoch_test_acc>=best_acc:
        best_acc=epoch_test_acc
        best_model=copy.deepcopy(model)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    lr=optimizer.state_dict()['param_groups'][0]['lr']
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
PATH='./best_model.pth'
torch.save(best_model.state_dict(),PATH)
print('Finished Training')

​​​​​​​​

7.结果可视化

import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.rcParams['figure.dpi']=100

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

​​​

8.预测本地图片

from PIL import Image
classes=list(total_data.class_to_idx)
def predict_one_image(image_path,model,transform,classes):
    test_img=Image.open(image_path).convert('RGB')
    plt.imshow(test_img)
    test_img=transform(test_img)
    img=test_img.to(device).unsqueeze(0)
    model=model.eval()
    output=model(img)
    _,pred=torch.max(output,1)
    pred_class=classes[pred]
    print('预测结果是:',pred_class)

predict_one_image(image_path='data/PotatoPlants/Early_blight/1.JPG', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

epoch_test_acc, epoch_test_loss

​​​​​​​​​​

​​总结:

1.VGG-16

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16


http://www.kler.cn/a/451819.html

相关文章:

  • YOLOv10目标检测-训练自己的数据
  • 最新的强大的文生视频模型Pyramid Flow 论文阅读及复现
  • Java 中反射的高级用法:窥探 Java 世界的魔法之门
  • ROSboard:为您的机器人提供强大的Web可视化工具
  • vulnhub靶场-matrix-breakout-2-morpheus攻略(截止至获取shell)
  • EasyGBS国标GB28181公网平台P2P远程访问故障诊断:云端服务端排查指南
  • 使用envoyfilter添加请求头
  • windows nacos安装配置
  • 反应力场的生成物、反应路径分析方法
  • unity弹出新的类似独立场景窗口独立运行一般怎么实现?
  • 【文档搜索引擎】搜索模块的完整实现
  • docker 部署HivisionIDPhotos实现证件照制作
  • springboot/ssm太原学院商铺管理系统Java代码编写web在线购物商城
  • dolphinscheduler服务RPC负载均衡源码解析(二)基于多种不同算法的负载均衡策略实现源码解析
  • 一文掌握如何编写可重复执行的SQL
  • Day55 图论part05
  • 【uniapp】支付宝付款成功后怎么调回自定义页面
  • 51c大模型~合集96
  • vue2版本elementUI的clearable属性和DateTimePicker 下拉框的清空功能冲突
  • MFC/C++学习系列之简单记录1——错误解决与Dialog移植
  • 【hackmymv】emma靶机wp
  • 如何在Facebook发布Reels?简单易懂的操作指南
  • openjdk17 中 klass 数组 在元空间内存分配
  • EMS从0到1之数据采集
  • 08. 基于docker-compose部署LNMP架构
  • Debug的使用