数据结构与算法之动态规划: LeetCode 72. 编辑距离 (Ts版)
编辑距离
- https://leetcode.cn/problems/edit-distance/description/
描述
- 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数
- 你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示
- 0 <= word1.length, word2.length <= 500
- word1 和 word2 由小写英文字母组成
Typescript 版算法实现
1 ) 方案1: 动态规划
function minDistance(word1: string, word2: string): number {
const n = word1.length;
const m = word2.length;
// 有一个字符串为空串
if (n * m === 0) {
return n + m;
}
// DP 数组
const D: number[][] = Array.from({ length: n + 1 }, () => Array(m + 1).fill(0));
// 边界状态初始化
for (let i = 0; i < n + 1; i++) {
D[i][0] = i;
}
for (let j = 0; j < m + 1; j++) {
D[0][j] = j;
}
// 计算所有 DP 值
for (let i = 1; i < n + 1; i++) {
for (let j = 1; j < m + 1; j++) {
const left = D[i - 1][j] + 1;
const down = D[i][j - 1] + 1;
let left_down = D[i - 1][j - 1];
if (word1.charAt(i - 1) !== word2.charAt(j - 1)) {
left_down += 1;
}
D[i][j] = Math.min(left, down, left_down);
}
}
return D[n][m];
}
2 ) 方案2: 动态规划自底向上
function minDistance(word1: string, word2: string): number {
const n1 = word1.length;
const n2 = word2.length;
// 初始化 DP 数组
const dp: number[][] = Array.from({ length: n1 + 1 }, () => Array(n2 + 1).fill(0));
// 初始化第一行
for (let j = 1; j <= n2; j++) {
dp[0][j] = dp[0][j - 1] + 1;
}
// 初始化第一列
for (let i = 1; i <= n1; i++) {
dp[i][0] = dp[i - 1][0] + 1;
}
// 计算所有 DP 值
for (let i = 1; i <= n1; i++) {
for (let j = 1; j <= n2; j++) {
if (word1.charAt(i - 1) === word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n1][n2];
}