当前位置: 首页 > article >正文

文献阅读分享:强化学习与大语言模型结合的推荐系统LEA

标题期刊年份
Reinforcement Learning-based Recommender Systems with Large Language Models for State Reward and Action ModelingACM Symposium on Neural Gaze Detection2024

🌟 研究背景

在信息过载的时代,推荐系统(RS)成为连接用户与相关内容的桥梁。尤其是基于序列的推荐(Sequential Recommendation),在音乐和视频流媒体服务中显得尤为重要。然而,现有的基于强化学习(RL)的推荐方法在利用历史用户-项目互动数据时,面临如何有效模拟用户反馈的挑战。本文提出了一种利用大型语言模型(LLMs)作为环境(LE)的方法,以增强基于RL的推荐系统。

🔍 相关工作

在推荐系统的研究中,已有工作通过门控循环单元(GRU)、卷积神经网络(CNN)和Transformer等模型进行序列推荐。这些模型主要依赖于监督学习,而自监督强化学习(SSRL)则通过训练RL代理来满足用户期望。然而,如何构建一个提供有意义用户反馈的高质量环境,仍是一个未解决的问题。

🚀 方法介绍

本文的核心在于将LLMs作为环境(LE)来模拟用户行为并为RL推荐系统提供反馈。具体方法如下:

  1. 状态模型(SM):通过对比用户-项目标记交互与正负动作,学习有效的状态表示。
  2. 奖励模型(RM):通过奖励提示,基于用户-项目标记交互和特定动作生成奖励分数。
  3. 正反馈增强(LEA):通过提示LE选择潜在的正反馈,增强有限的离线训练数据。

📊 模型图输入输出转变

模型的输入是用户-项目互动序列,输出是针对每个用户的下一个可能互动的项目。状态模型(SM)将用户的历史互动转换为丰富的状态表示,而奖励模型(RM)则根据这些状态和动作预测奖励。LEA方法进一步通过预测正反馈来增强训练数据。

🧪 实验

实验在两个公开数据集上进行:LFM和Industry。通过比较LEA与传统的RL框架(如SNQN和SA2C),我们发现LEA在多个指标上均显示出优越性。特别是,当结合状态和奖励模型时,性能提升最为显著。

🌈 创新点

  • LLMs作为环境(LE):首次将LLMs应用于模拟用户行为和提供反馈,增强RL推荐系统。
  • 正反馈增强(LEA):提出一种新的方法,通过预测正反馈来丰富离线训练数据,提高模型的泛化能力。
  • 参数效率:通过适配器和指令提示,实现了对LLMs的高效微调,无需大幅增加计算资源。

http://www.kler.cn/a/460754.html

相关文章:

  • linux 软链接 快捷方式 详解
  • Flutter踩坑记-第三方SDK不兼容Gradle 8.0,需适配namespace
  • redux react-redux @reduxjs/toolkit
  • 【MySQL】--- 内置函数
  • ASP.NET CORE 依赖注入的三种方式,分别是什么,使用场景
  • pip下载包出现SSLError
  • 封装echarts成vue component
  • 拉取 Docker 镜像 失败问题
  • Leetcode 3404. Count Special Subsequences
  • 边缘AI计算怎么回事
  • 【paddle】初次尝试
  • jenkins集成工具(一)部署php项目
  • ROS2软件架构全面解析-学习如何设计通信中间件框架
  • SCAU期末笔记 - 计算机系统基础考纲习题
  • docker和k8s实践
  • SAP PP CSAP_MAT_BOM_MAINTAIN BOM ECN 删除组件
  • docker-compos mysql5.7主从配置
  • Python入门:9.递归函数和高阶函数
  • 2020最新整理版SpringBoot 面试题
  • 【C++】2029:【例4.15】水仙花数
  • Python列表推导常见问题解析:高效编程的陷阱与避坑指南
  • DeepSeek V3“报错家门”:我是ChatGPT
  • 【brew安装失败】DNS 查询 raw.githubusercontent.com 返回的是 0.0.0.0
  • 电子电气架构 --- 汽车电子电器设计概述
  • 用Pyside6 和sqlite3 重写了《电脑装配单》 加入切换主题 样式
  • 构建一个rust生产应用读书笔记7-确认邮件3