当前位置: 首页 > article >正文

教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件

1. 安装 PyCharm

  1. 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。
  2. 下载社区版(免费)或专业版(收费,提供更多功能)。
  3. 按照操作系统的安装指导安装 PyCharm。
  4. 安装后打开 PyCharm,并根据提示设置初始环境。

2. 安装 Anaconda

  1. 访问 Anaconda 官方网站:https://www.anaconda.com/。

  2. 下载适合您操作系统的版本。
    在这里插入图片描述

  3. 按照安装指导安装 Anaconda:

    • 确保选中将 Anaconda 加入到系统的 PATH(可选,常许可选)。
  4. 通过打开窗口或命令控制口输入以验证安装:

    conda --version
    

3. 创建用于机器学习的虚拟环境

  1. 打开命令控制口或窗口。
  2. 通过下列命令创建一个新的虚拟环境:
    conda create -n ml_env python=3.9
    
    • ml_env 换成您喜欢的环境名称。
    • 3.9 换成您需要的 Python 版本(如 3.10)。
  3. 启用刚创建的虚拟环境:
    • Windows 上:
      conda activate ml_env
      
    • macOS/Linux 上:
      source activate ml_env
      
  4. 安装基础机器学习库:
    conda install numpy pandas matplotlib scikit-learn
    
    • 如需学习深度学习,可添加 TensorFlow 或 PyTorch:
      conda install tensorflow
      # 或
      conda install pytorch torchvision torchaudio -c pytorch
      

4. 在 PyCharm 中配置虚拟环境

  1. 打开 PyCharm,创建一个新项目:
    • 进入 File > New Project
    • 选择项目位置。
  2. 设置项目的 Python 解释器为虚拟环境:
    • 进入 File > Settings (macOS 为 Preferences) > Project > Python Interpreter
    • 点击驱动图标,选择 Add Interpreter > Conda Environment > Existing Environment
    • 选择您虚拟环境中的 Python 执行文件:
      • Windows 上:C:\Users\YourUsername\Anaconda3\envs\ml_env\python.exe
      • macOS/Linux 上:~/anaconda3/envs/ml_env/bin/python
  3. 点击 OK 保存设置。

5. 写作并运行您的第一个 Python 文件

  1. 创建一个新的 Python 文件:
    • 右键 PyCharm 中项目面板上的项目文件夹。
    • 选择 New > Python File,并为文件命名,如 first_ml_script.py
  2. 在文件中写入一个简单脚本:
    import numpy as np
    import pandas as pd
    from sklearn.linear_model import LinearRegression
    
    # 示例数据
    X = np.array([[1], [2], [3], [4], [5]])
    y = np.array([1, 4, 9, 16, 25])
    
    # 线性回归模型
    model = LinearRegression()
    model.fit(X, y)
    
    print("模型系数:", model.coef_)
    print("模型截距:", model.intercept_)
    
  3. 运行脚本:
    • 在项目面板中右键文件,选择 Run ‘first_ml_script’
    • 或者点击右上角的绿色跑按钮。

6. 验证您的环境

  • 如果设置正确,您应该能在 PyCharm 的输出面板中看到脚本的输出。
  • 示例输出:
    模型系数: [6.]
    模型截距: -7.0
    

恭喜您!您已成功安装 PyCharm 和 Anaconda,创建了一个用于机器学习的虚拟环境,并运行了第一个 Python 文件!


http://www.kler.cn/a/465502.html

相关文章:

  • Scala_【4】流程控制
  • 后端java开发路由接口并部署服务器(四)
  • Elasticsearch:减少 Elastic 容器镜像中的 CVE(常见的漏洞和暴露)
  • 组会 | DenseNet
  • 【NLP高频面题】用RNN训练语言模型时如何计算损失?
  • xdoj 有序数列插值
  • 【UE5 C++课程系列笔记】19——通过GConfig读写.ini文件
  • 网络原理之TCP和UDP
  • Java-多种方法实现多线程卖票
  • 在mac上通过Vundle安装YouCompleteMe(YCM)
  • LeetCode题练习与总结:超级洗衣机--517
  • vue,使用unplugin-auto-import避免反复import,按需自动引入
  • Dpath之详解(Detailed Explanation of Dpath)
  • 借助 FinClip 跨端技术探索鸿蒙原生应用开发之旅
  • spring boot IDEA启动两个端口服务nginx负载
  • 如何使用Python自动化发送消息:用pynput库批量输入并发送文本
  • 网络安全:交换机技术
  • leetcode 面试经典 150 题:多数元素
  • 工信部电子标准院计算机视觉证书报考指南!
  • 项目引入MybatisPlus
  • npm提示Install fail! Error_ EBUSY_ resource busy or
  • STM32G431收发CAN
  • python的urllib模块和http模块
  • stm32f103zet6 ds18b20
  • openbmc sdk09.03 适配(一)
  • 内存卡乱码问题全解析与高效恢复方案