当前位置: 首页 > article >正文

数据挖掘——关联规则挖掘

数据挖掘——关联数据挖掘

  • 关联数据挖掘
    • 关联规则
    • 关联规则挖掘问题:
    • 具体挖掘过程
      • Apriori
    • 产生关联规则

关联数据挖掘

关联分析用于发现隐藏在大型数据集中的令人感兴趣的联系,所发现的模式通常用关联规则或频繁项集的形式表示。

关联规则反映一个事物与其它事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物发生就能够预测与它相关联的其它事物的发生。
在这里插入图片描述
定义:频繁项集

项集(Itemset)

  • 包含0个或多个项的集合
    • 例子:{Milk, Bread, Diaper}
  • k-项集
    • 如果一个项集包含k个项

支持度计数(Supportcount)( σ \sigma σ)

  • 包含特定项集的事务个数
  • 例如: σ \sigma σ({Milk,Bread,Diaper}) = 2

支持度(Support)

  • 包含项集的事务数与总事务数的比值
  • 例如: s({Milk,Bread, Diaper}) = 2/5

频繁项集(FrequentItemset)

  • 满足最小支持度阈值(minsup )的所有项集

频繁闭项集

  • 所谓闭项集,就是指一个项集X,它的直接超集的支持度计数都不等于它本身的支持度计数。如果闭项集同时是频繁的,也就是它的支持度大于等于最小支持度阈值,那它就称为闭频繁项集。

最大频繁项集
最大频繁项集是这样的频繁项集,它的直接超集都不是频繁的
在这里插入图片描述

关联规则

关联规则是形如X →Y的蕴含表达式, 其中 X 和 Y 是不相交的项集

  • 例子:{Milk, Diaper} →{Beer}

关联规则的强度

  • 支持度 Support (s)
    确定项集的频繁程度
  • 置信度 Confidence (c)
    确定Y在包含X的事务中出现的频繁程度

在这里插入图片描述

关联规则挖掘问题:

给定事务的集合 T, 关联规则发现是指找出支持度大于等于minsup并且置信度大于等于minconf的所有规则, minsup和minconf是对应的支持度和置信度阈值

具体挖掘过程

大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:

  • 频繁项集产生(Frequent Itemset Generation)
    • 其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
  • 规则的产生(Rule Generation)
    • 其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则(strong rule)。

降低产生频繁项集计算复杂度的方法

  1. 减少候选项集的数量
    • 先验原理:(Apriori)
  2. 减少比较的次数
    • 替代将每个候选项集与每个事务相匹配,可以使用更高级的数据结构,或存储候选项集或压缩数据集,来减少比较次数(FPGrowth)

Apriori

先验原理

  • 如果一个项集是频繁的,则它的所有子集一定也是频繁的
  • 相反,如果一个项集是非频繁的,则它的所有超集也一定是非频繁的

在这里插入图片描述
需要一提的是Apriori中所运用到的项的连接准则:

项的连接准则:去掉尾项之后如果二者一样则可以连接
例如本例中{A,C},{B,C},{B,E},{C,E}四者,只有{B,C},{B,E},两者去掉尾项后的B是相等的,所以是可以连接的{B,C,E}

Apriori算法特点

优点

  • 使用先验性质,大大提高了频繁项集逐层产生的效率
  • 简单易理解;数据集要求低

缺点

  • 多次扫描数据库
  • 候选项规模庞大
  • 计算支持度开销大

Apriori算法需要反复的生成候选项,如果项的数目比较大,候选项的数目将达到组合爆炸式的增长

提高Apriori算法性能的方法
在这里插入图片描述

产生关联规则

任务描述:给定频繁项集Y, 查找Y的所有非空真子集 X ∈ Y X \in Y XY,使得 X → Y – X X \rightarrow Y –X XYX 的置信度超过最小置信度阈值minconf

  • 例子:If {A,B,C} is a frequent itemset, 候选规则如下:
    A B → C A → B C A C → B B → A C B C → A C → A B AB \rightarrow C\\ A\rightarrow BC\\ AC \rightarrow B\\ B \rightarrow AC\\ BC \rightarrow A\\ C \rightarrow AB ABCABCACBBACBCACAB
    如果 |Y| = k, 那么会有 2k–2 个候选关联规则 (不包括 Y → ∅ 、 ∅ → Y Y→\emptyset、 \empty →Y YY

如何高效地从频繁项集中产生关联规则?

  • 通常置信度不满足反单调性(anti-monotone property ),例如:
  • c(ABC →D) 可能大于也可能小于 c(AB →D)
  • 但是,针对同一个频繁项集的关联规则,如果规则的后件满足子集关系,那么这些规则的置信度间满足反单调性
  • e.g., Y = A , B , C , D c ( A B C → D ) ≥ c ( A B → C D ) ≥ c ( A → B C D ) Y= {A,B,C,D}\\ c(ABC → D) \geq c(AB → CD) \geq c(A → BCD) Y=A,B,C,Dc(ABCD)c(ABCD)c(ABCD)

http://www.kler.cn/a/466461.html

相关文章:

  • pdf预览兼容问题- chrome浏览器105及一下预览不了
  • NVIDIA DLI课程《NVIDIA NIM入门》——学习笔记
  • OpenGL入门最后一章观察矩阵(照相机)
  • Level DB --- BloomFilterPolicy
  • Linux(Centos 7.6)命令详解:ls
  • Spring Boot 的自动配置,以rabbitmq为例,请详细说明
  • 如何进一步提高Oracle lgwr的写性能?
  • R机器学习:神经网络算法的理解与实操,实例解析
  • eplan如何导出可跳转的PDF
  • 【Rust练习】26.Package and Crate
  • 深入理解 Java Set 集合:原理、应用与高频面试题解析
  • 图片转三维模型网站(免费),AI建模,一键把图片转三维模型,二维图片转3维模型,AI建模
  • 用python编写一个放烟花的小程序
  • 机器学习笔记——正则化
  • Entity Framework Core介绍
  • React第二十一章(useCallback)
  • Kafka 快速实战及基本原理详解解析-01
  • Ubuntu Server安装谷歌浏览器
  • 多模态论文笔记——Coca
  • MATLAB中dbstack函数用法
  • 【pyqt】(四)Designer布局
  • 根据 el-dialog 的高度动态计算 el-table 的高度
  • 常规继承类对象大小
  • Cause: java.sql.SQLException: sql injection violation, comment not allow异常问题处理
  • 【MySQL基础篇】三、表结构的操作
  • 最新MySQL面试题(2025超详细版)