【高阶数据结构】哈希表封装unordered_map、unordered_set
哈希表封装unordered_map、unordered_set
- 1.源码及框架分析
- 2.模拟实现unordered_map和unordered_set
- 1.支持 insert 的实现
- 2.支持 iterator 的实现
- 3.unordered_map支持 operator [] 的实现
- 3.总代码
- 1.HashTable.h
- 2.UnorderedMap.h
- 3.UnorderedSet.h
- 4.Test.cpp
1.源码及框架分析
SGI-STL30版本源代码中没有unordered_map和unordered_set,SGI-STL30版本是C++11之前的STL版本,这两个容器是C++11之后才更新的。但是SGI-STL30实现了哈希表,容器的名字是hash_map和hash_set,它是作为非标准的容器出现的,非标准是指非C++标准规定必须实现的,源代码在hash_map/hash_set/stl_hash_map/stl_hash_set/stl_hashtable.h中。hash_map和hash_set的实现结构框架核心部分截取出来如下:
// stl_hash_set
template <class Value, class HashFcn = hash<Value>,
class EqualKey = equal_to<Value>,
class Alloc = alloc>
class hash_set
{
private:
typedef hashtable<Value, Value, HashFcn, identity<Value>,
EqualKey, Alloc> ht;
ht rep;
public:
typedef typename ht::key_type key_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename ht::const_iterator iterator;
typedef typename ht::const_iterator const_iterator;
hasher hash_funct() const { return rep.hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
};
// stl_hash_map
template <class Key, class T, class HashFcn = hash<Key>,
class EqualKey = equal_to<Key>,
class Alloc = alloc>
class hash_map
{
private:
typedef hashtable<pair<const Key, T>, Key, HashFcn,
select1st<pair<const Key, T> >, EqualKey, Alloc> ht;
ht rep;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
};
// stl_hashtable.h
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey,
class Alloc>
class hashtable {
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
private:
hasher hash;
key_equal equals;
ExtractKey get_key;
typedef __hashtable_node<Value> node;
vector<node*, Alloc> buckets;
size_type num_elements;
public:
typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
Alloc> iterator;
pair<iterator, bool> insert_unique(const value_type& obj);
const_iterator find(const key_type& key) const;
};
template <class Value>
struct __hashtable_node
{
__hashtable_node* next;
Value val;
};
- 通过源码可以看到,结构上hash_map和hash_set跟map和set的完全类似,复用同一个hashtable实现key和key/value结构,hash_set传给hash_table的是两个key,hash_map传给hash_table的是pair<const key,value>
- 需要注意的是源码里面跟map/set源码类似,命名风格比较乱,这里比map和set还乱,hash_set模板参数居然用的Value命名,hash_map用的是Key和T命名。下面我们模拟一份自己的出来,就按自己的风格走了。
2.模拟实现unordered_map和unordered_set
1.支持 insert 的实现
- 参考源码框架,unordered_map和unordered_set复用之前我们实现的哈希表。
- 这里相比源码调整一下,key参数就用K,value参数就用V,哈希表中的数据类型使用T。
- 其次跟map和set相比而言unordered_map和unordered_set的模拟实现类结构更复杂一点,但是大框架和思路是完全类似的。因为HashTable实现了泛型不知道T参数导致是K,还是pair<K,V>,那么insert内部进行插入时要用K对象转换成整形取模和K比较相等,因为pair的value不参与计算取模,且默认支持的是key和value一起比较相等,我们需要时的任何时候只需要比较K对象,所以我们在unordered_map和unordered_set层分别实现一个MapKeyOfT和SetKeyOfT的仿函数传给HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成整形取模和K比较相等,具体细节参考如下代码实现。
//HashTable.h
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
, _next(nullptr)
{}
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
typedef HashNode<T> Node;
public:
inline unsigned long __stl_next_prime(unsigned long n)
{
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
//lower_bound:大于等于
//upper_bound:大于
return pos == last ? *(last - 1) : *pos;
}
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
bool Insert(const T& data)
{
KeyOfT kot;
Hash hash;
//若存在,插入失败
if (Find(kot(data)))
return false;
//负载因子==1时:扩容
if (_n == _tables.size())
{
vector<Node*> newTable(__stl_next_prime(_tables.size() + 1));
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//头插到新表中
size_t hashi = hash(kot(cur->_data)) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newTable);
}
size_t hashi = hash(kot(data)) % _tables.size();
//头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return true;
}
private:
vector<Node*> _tables; //指针数组
size_t _n; //表中存储数据个数
};
}
//UnorderedSet.h
namespace xzy
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
bool Insert(const K& key)
{
return _ht.Insert(key);
}
private:
hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
};
}
//UnorderedMap.h
namespace xzy
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
bool Insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
private:
hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
};
}
2.支持 iterator 的实现
iterator核心源代码
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator {
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable;
typedef __hashtable_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
const_iterator;
typedef __hashtable_node<Value> node;
typedef forward_iterator_tag iterator_category;
typedef Value value_type;
node* cur;
hashtable* ht;
__hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}
__hashtable_iterator() {}
reference operator*() const { return cur->val; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& it) const { return cur == it.cur; }
bool operator!=(const iterator& it) const { return cur != it.cur; }
};
template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
{
const node* old = cur;
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
iterator实现思路分析:
- iterator实现的大框架跟list的iterator思路是一致的,用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为,要注意的是哈希表的迭代器是单向迭代器。
- 这里的难点是operator++的实现。iterator中有一个指向结点的指针,如果当前桶下面还有结点,则结点的指针指向下一个结点即可。如果当前桶走完了,则需要想办法计算找到下一个桶。这里的难点反而是结构设计的问题,参考上面的源码,我们可以看到iterator中除了有结点的指针,还有哈希表对象的指针,这样当前桶走完了,要计算下一个桶就相对容易多了,用key值计算出当前桶位置,依次往后找下一个不为空的桶即可。
- begin()返回第一个桶中第一个节点指针构造的迭代器,这⾥end()返回迭代器可以用空表示。
- unordered_set的iterator不支持修改key,我们把unordered_set的第⼆个模板参数改成const K即可, HashTable<K,const K,SetKeyOfT,Hash> _ht;
- unordered_map的iterator不支持修改key,但是可以修改value,我们把unordered_map的第二个模板参数pair的第一个参数改成const K即可, HashTable<K,pair<const K,V>,MapKeyOfT,Hash> _ht;
- 支持完整的迭代器还有很多细节需要修改,具体参考下面的代码。
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
, _next(nullptr)
{}
};
//前置声明:解决 HTIterator 与 HashTable 互相依赖的问题
template<class K, class T, class KeyOfT, class Hash>
class HashTable;
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
class HTIterator
{
typedef HashNode<T> Node;
typedef HashTable<K, T, KeyOfT, Hash> HT;
typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;
public:
HTIterator(Node* node, const HT* ht) //注意:构造const迭代器时,const权限问题,可以缩小,不能放大
:_node(node)
, _ht(ht)
{}
Self& operator++()
{
if (_node->_next)
{
//当前桶还有数据,走到当前桶的下一个结点
_node = _node->_next;
}
else
{
//当前桶走完了,找下一个不为空的桶
KeyOfT kot;
Hash hash;
size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
++hashi;
while (hashi < _ht->_tables.size())
{
_node = _ht->_tables[hashi];
if (_node)
break;
else
hashi++;
}
//所有的桶都走完了,当前迭代器就是end(),也就是_node等于nullptr
if (hashi == _ht->_tables.size())
{
_node = nullptr;
}
}
return *this;
}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
private:
Node* _node;
const HT* _ht;
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
//友元声明
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
friend class HTIterator;
typedef HashNode<T> Node;
public:
typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;
Iterator Begin()
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return { cur, this };
}
}
return End();
}
Iterator End()
{
return { nullptr, this };
}
ConstIterator Begin() const
{
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return { cur, this };
}
}
return End();
}
ConstIterator End() const
{
return { nullptr, this };
}
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
private:
vector<Node*> _tables; //指针数组
size_t _n; //表中存储数据个数
};
}
//UnorderedSet.h
namespace xzy
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
private:
hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
};
};
//UnorderedMap.h
namespace xzy
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
private:
hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
};
}
3.unordered_map支持 operator [] 的实现
- unordered_map要支持 operator [] 主要需要修改insert返回值,修改HashTable中的insert返回值为pair<Iterator, bool> Insert(const T& data)
- 有了 insert 支持 operator [] 实现就很简单了,具体参考下面代码实现。
//HashTable.h
Iterator Find(const K& key)
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
return Iterator(cur, this);
}
cur = cur->_next;
}
return End();
}
pair<Iterator, bool> Insert(const T& data)
{
KeyOfT kot;
Hash hash;
Iterator it = Find(kot(data));
//若存在,插入失败
if (it != End())
return { it, false };
//负载因子==1时:扩容
if (_n == _tables.size())
{
vector<Node*> newTable(__stl_next_prime(_tables.size() + 1));
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//头插到新表中
size_t hashi = hash(kot(cur->_data)) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newTable);
}
size_t hashi = hash(kot(data)) % _tables.size();
//头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return { Iterator(newnode, this), true };
}
//UnorderedMap.h
pair<iterator, bool> Insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = Insert({ key, V() });
//return ret.first.operator->()->second;
return ret.first->second;
}
3.总代码
1.HashTable.h
#pragma once
#include<iostream>
#include<vector>
#include<string>
using namespace std;
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
struct StringHashFunc
{
size_t operator()(const string& s)
{
size_t hash = 0;
for (auto& ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
};
//string较为常用,可以进行特化
template<>
struct HashFunc<string>
{
//字符串转换成整形,可以把字符ASCII码相加即可
//但是直接相加的话,类似"abcd"和"bcad"这样的字符串计算出是相同的
//这里我们使用BKDR哈希的思路,用上次的计算结果去乘一个质数,这个质数一般取31, 131等效果会比较好
size_t operator()(const string& s)
{
size_t hash = 0;
for (auto& ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
};
namespace hash_bucket
{
template<class T>
struct HashNode
{
T _data;
HashNode<T>* _next;
HashNode(const T& data)
:_data(data)
, _next(nullptr)
{}
};
//前置声明:解决 HTIterator 与 HashTable 互相依赖的问题
template<class K, class T, class KeyOfT, class Hash>
class HashTable;
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
class HTIterator
{
typedef HashNode<T> Node;
typedef HashTable<K, T, KeyOfT, Hash> HT;
typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;
public:
HTIterator(Node* node, const HT* ht) //注意:构造const迭代器时,const权限问题,可以缩小,不能放大
:_node(node)
, _ht(ht)
{}
Self& operator++()
{
if (_node->_next)
{
//当前桶还有数据,走到当前桶的下一个结点
_node = _node->_next;
}
else
{
//当前桶走完了,找下一个不为空的桶
KeyOfT kot;
Hash hash;
size_t hashi = hash(kot(_node->_data)) % _ht->_tables.size();
++hashi;
while (hashi < _ht->_tables.size())
{
_node = _ht->_tables[hashi];
if (_node)
break;
else
hashi++;
}
//所有的桶都走完了,当前迭代器就是end(),也就是_node等于nullptr
if (hashi == _ht->_tables.size())
{
_node = nullptr;
}
}
return *this;
}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
private:
Node* _node;
const HT* _ht;
};
template<class K, class T, class KeyOfT, class Hash>
class HashTable
{
//友元声明
template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
friend class HTIterator;
typedef HashNode<T> Node;
public:
typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;
typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;
Iterator Begin()
{
if (_n == 0)
return End();
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return { cur, this };
}
}
return End();
}
Iterator End()
{
return { nullptr, this };
}
ConstIterator Begin() const
{
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
if (cur)
{
return { cur, this };
}
}
return End();
}
ConstIterator End() const
{
return { nullptr, this };
}
inline unsigned long __stl_next_prime(unsigned long n)
{
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
//lower_bound:大于等于
//upper_bound:大于
return pos == last ? *(last - 1) : *pos;
}
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
~HashTable()
{
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
Iterator Find(const K& key)
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
return Iterator(cur, this);
}
cur = cur->_next;
}
return End();
}
pair<Iterator, bool> Insert(const T& data)
{
KeyOfT kot;
Hash hash;
Iterator it = Find(kot(data));
//若存在,插入失败
if (it != End())
return { it, false };
//负载因子==1时:扩容
if (_n == _tables.size())
{
vector<Node*> newTable(__stl_next_prime(_tables.size() + 1));
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
//头插到新表中
size_t hashi = hash(kot(cur->_data)) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newTable);
}
size_t hashi = hash(kot(data)) % _tables.size();
//头插
Node* newnode = new Node(data);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return { Iterator(newnode, this), true };
}
bool Erase(const K& key)
{
KeyOfT kot;
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (kot(cur->_data) == key)
{
if (prev == nullptr)
{
//删除头节点
_tables[hashi] = cur->_next;
}
else
{
//删除中间节点
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
else
{
prev = cur;
cur = cur->_next;
}
}
return false;
}
private:
vector<Node*> _tables; //指针数组
size_t _n; //表中存储数据个数
};
}
2.UnorderedMap.h
#pragma once
#include"HashTable.h"
namespace xzy
{
template<class K, class V, class Hash = HashFunc<K>>
class unordered_map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
iterator Find(const K& key)
{
return _ht.Find(key);
}
pair<iterator, bool> Insert(const pair<K, V>& kv)
{
return _ht.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = Insert({ key, V() });
//return ret.first.operator->()->second;
return ret.first->second;
}
bool Erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
};
}
3.UnorderedSet.h
#pragma once
#include"HashTable.h"
namespace xzy
{
template<class K, class Hash = HashFunc<K>>
class unordered_set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;
typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;
iterator begin()
{
return _ht.Begin();
}
iterator end()
{
return _ht.End();
}
const_iterator begin() const
{
return _ht.Begin();
}
const_iterator end() const
{
return _ht.End();
}
iterator Find(const K& key)
{
return _ht.Find(key);
}
pair<iterator, bool> Insert(const K& key)
{
return _ht.Insert(key);
}
bool Erase(const K& key)
{
return _ht.Erase(key);
}
private:
hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
};
}
4.Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include"UnorderedSet.h"
#include"UnorderedMap.h"
void test_set()
{
int a[] = { 5,6,8,9,7,4,2,3,1 };
xzy::unordered_set<int> s;
for (auto e : a)
{
s.Insert(e);
}
xzy::unordered_set<int>::iterator it = s.begin();
while (it != s.end())
{
//*it = 1; Key不支持修改
cout << *it << " ";
++it;
}
cout << endl;
for (auto e : s)
{
cout << e << " ";
}
cout << endl;
xzy::unordered_set<int>::const_iterator cit = s.begin();
while (cit != s.end())
{
//*cit = 1; Key不支持修改
cout << *cit << " ";
++cit;
}
cout << endl;
for (auto e : s)
{
cout << e << " ";
}
cout << endl;
}
void test_map()
{
xzy::unordered_map<string, string> dict;
dict.Insert({ "sort", "排序" });
dict.Insert({ "字符串", "string" });
dict.Insert({ "sort", "排序" });
dict.Insert({ "left", "左边" });
dict.Insert({ "right", "右边" });
dict["left"] = "左边,剩余";
dict["insert"] = "插入";
dict["string"];
xzy::unordered_map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
//it->first += 'x'; map中的Key不能被修改
//it->second += 'x'; map中的Value能被修改
//cout << it.operator->()->first << ":" << it.operator->()->second << endl;
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
for (auto& kv : dict)
{
cout << kv.first << ":" << kv.second << endl;
}
cout << endl;
}
int main()
{
test_set();
test_map();
return 0;
}