当前位置: 首页 > article >正文

【prometheus】Pushgateway安装和使用

目录

一、Pushgateway概述

1.1 Pushgateway简介

1.2 Pushgateway优点

1.3 pushgateway缺点

二、测试环境

三、安装测试

3.1 pushgateway安装

3.2 prometheus添加pushgateway

3.3 推送指定的数据格式到pushgateway

1.添加单条数据

2.添加复杂数据

3.SDk-prometheus-client使用



【Prometheus】概念和工作原理介绍_prometheus工作原理-CSDN博客

【Prometheus】k8s集群部署node-exporter_kubectl 安装 promethues node-exporter-CSDN博客

【prometheus】k8s集群部署prometheus server-CSDN博客

【prometheus】k8s集群部署Grafana安装和配置|Prometheus监控K8S

【prometheus】k8s集群部署AlertManager实现邮件和钉钉告警-CSDN博客

【prometheus】监控MySQL并实现可视化-CSDN博客

【prometheus】监控nginx-CSDN博客


一、Pushgateway概述


1.1 Pushgateway简介


Pushgateway是prometheus的一个组件,prometheus server默认是通过exporter主动获取数据(默认采取pull拉取数据),pushgateway则是通过被动方式推送数据到prometheus server,用户可以写一些自定义的监控脚本把需要监控的数据发送给pushgateway, 然后pushgateway再把数据发送给Prometheus server。

1.2 Pushgateway优点


  • Prometheus 默认采用定时pull 模式拉取targets数据,但是如果不在一个子网或者防火墙,prometheus就拉取不到targets数据,所以可以采用各个target往pushgateway上push数据,然后prometheus去pushgateway上定时pull数据
  • 在监控业务数据的时候,需要将不同数据汇总, 汇总之后的数据可以由pushgateway统一收集,然后由 Prometheus 统一拉取。

1.3 pushgateway缺点


  • Prometheus拉取状态只针对 pushgateway, 不能对每个节点都有效;
  • Pushgateway出现问题,整个采集到的数据都会出现问题
  • 监控下线,prometheus还会拉取到旧的监控数据,需要手动清理 pushgateway不要的数据。

二、测试环境


IP

主机名

192.168.2.139

master1

192.168.40.140

node1


三、安装测试


3.1 pushgateway安装


在node1节点操作

docker pull prom/pushgateway
docker run -d --name pushgateway -p 9091:9091 prom/pushgateway

在浏览器访问192.168.2.140:9091出现如下ui界面

3.2 prometheus添加pushgateway


修改prometheus-cfg.yaml文件

- job_name: 'pushgateway'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.2.140:9091']
   honor_labels: true

更新

kubectl apply -f prometheus-alertmanager-cfg.yaml
kubectl delete -f prometheus-alertmanager-deploy.yaml
kubectl apply  -f prometheus-alertmanager-deploy.yaml

登录prometheus http://192.168.2.139:30242/targets

3.3 推送指定的数据格式到pushgateway


1.添加单条数据
# 向 {job="test_job"} 添加单条数据:
echo " metric 3.6" | curl --data-binary @- http://192.168.2.140:9091/metrics/job/test_job

这里需要注意的是将<key & value>推送给pushgateway,curl --data-binary是将HTTP POST请求中的数据发送给HTTP服务器(pushgateway),和用户提交THML表单时浏览器的行为是一样的,HTTP POST请求中的数据为纯二进制数据。

prometheus web中查询

2.添加复杂数据
# 添加复杂数据
cat <<EOF | curl --data-binary @- http://192.168.2.140:9091/metrics/job/test_job/instance/test_instance
# TYPE node_memory_usage gauge
node_memory_usage 26
# TYPE memory_total gauge
node_memory_total 26000
EOF

这条连接主要分为三个部分:

  • http://192.168.2.143:9091/metrics/job/test_job:这是URL的主location,发送到哪个URL
  • job/test_job:表示是推送到哪个prometheus定义的job里面,上面我们定义的job_name为pushgateway
  • instance/test_instance:表示推送后显示的主机名称是什么,从上面pushgateway图也可以看出

如下是删除某个实例

# 删除某个组下某个实例的所有数据
curl -X DELETE http://192.168.2.140:9091/metrics/job/test_job/instance/test_instance

# 删除某个组下的所有数据:
curl -X DELETE http://192.168.2.140:9091/metrics/job/test_job
3.SDk-prometheus-client使用

python安装 prometheus_client

使用 pip 工具可以非常方便地安装 prometheus_client:

测试脚本

# -*- coding: utf-8 -*-

# 导入所需的库
from prometheus_client import CollectorRegistry, Gauge, push_to_gateway


if __name__ == '__main__':
    # 定义和注册指标
    registry = CollectorRegistry()
    labels = ['req_status', 'req_method', 'req_url']
    g_one = Gauge('requests_total', 'url请求次数', labels, registry=registry)
    g_two = Gauge('avg_response_time_seconds', '1分钟内的URL平均响应时间', labels, registry=registry)

    # 收集和记录指标数据
    g_one.labels('200','GET', '/test/url').set(1) #set设定值
    g_two.labels('200','GET', '/test/api/url/').set(10) #set设定值

    # 推送指标数据到Pushgateway
    push_to_gateway('http://192.168.2.140:9091', job='SampleURLMetrics', registry=registry)

在这个示例中,我们定义了一个名为requests_total的指标,记录了一个值为1和10的示例数据,并将指标数据推送到了名为example_job的job中。


http://www.kler.cn/a/470989.html

相关文章:

  • 搭建企业AI助理的创新应用与案例分析
  • 如何轻松反转C# List<T>中的元素顺序
  • 信息系统管理师试题-人力资源
  • LRU(1)
  • 计算机网络学习
  • javaEE-网络原理-1初识
  • Devart dotConnect发布全新版本,支持EF Core 9、完全兼容 .NET 9 等!
  • Ubuntu24.04.1 LTS+Win11双系统安装记录
  • node.js之---内置模块
  • 信号处理-消除趋势项
  • VulnHub-Acid(1/100)
  • 前端面试题-(webpack基础)
  • 计算机网络常见面试题及解答
  • 在Linux中,zabbix如何监控脑裂?
  • 接口开发完后,个人对于接下来接口优化的一些思考
  • iOS - 自旋锁
  • Unity【Colliders碰撞器】和【Rigibody刚体】的应用——小球反弹效果
  • Read View在MVCC是如何工作的?
  • 解密序列建模:理解 RNN、LSTM 和 Seq2Seq
  • 深度学习GPU服务器推荐:打造高效运算平台
  • js 之图片流式转换及图片处理+createObjectURL+canvas+webgl+buffer
  • LED背光驱动芯片RT9293应用电路
  • 用Python进行RU计算
  • Qt pdf分割成png格式
  • 5.zookeeper可视化工具ZooInspector
  • QT自定义工具条渐变背景颜色一例