当前位置: 首页 > article >正文

Spring AI ectorStore

Spring AI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中扮演着至关重要的角色。以下是对Spring AI VectorStore的详细解析:

一、VectorStore的基本概念

  1. 定义:VectorStore特别适用于处理那些经过嵌入模型转化后的数据。在VectorStore中,查询与传统关系数据库不同,它执行的是相似性搜索,而非精确匹配。当给定向量作为查询时,它会返回与查询向量“相似”的向量。
  2. 应用场景:VectorStore主要用于将数据与AI模型集成。它存储并支持对这些向量的相似性搜索,为AI模型提供丰富的上下文信息,从而实现更精确、更智能的回复。这种技术被称为检索增强生成(Retrieval Augmented Generation,RAG)。

二、VectorStore的核心接口

Spring AI框架通过VectorStore接口为向量数据库交互提供了抽象化的API。VectorStore接口定义了以下核心操作:

  1. 添加文档:void add(List documents),将文档添加到向量数据库中。
  2. 删除文档:Optional delete(List idList),从向量数据库中删除指定ID的文档。
  3. 相似性搜索
    • List similaritySearch(String query),根据查询字符串进行相似性搜索,返回相似的文档列表。
    • List similaritySearch(SearchRequest request),根据SearchRequest对象进行更复杂的相似性搜索。其中,SearchRequest对象允许开发者微调相似性搜索的参数,如指定要返回的相似文档的最大数量(topK)、相似度阈值(threshold)以及基于元数据的过滤表达式(filterExpression)。

三、VectorStore的使用流程

  1. 数据准备:在将文档存储到向量数据库之前,需要先将文档内容转换为向量嵌入。Spring AI框架支持多种嵌入模型,如Word2Vec、GLoVE、BERT以及OpenAI的text-embedding-ada-002等。开发者可以根据自己的需求选择合适的嵌入模型。
  2. 文档嵌入:利用Spring AI框架提供的EmbeddingClient将文档转换为向量嵌入。
  3. 存储到VectorStore:将转换后的向量嵌入存储到VectorStore中。
  4. 相似性搜索:当用户发起查询时,Spring AI框架会自动将查询字符串转换为向量,并在VectorStore中执行相似性搜索,返回与查询向量最相似的文档列表。
  5. AI模型处理:将这些相似的文档作为用户问题的上下文信息,与用户的查询一起发送到AI模型中进行处理,从而实现更精确、更智能的回复。

四、Spring AI与VectorStore的集成案例

以基于Spring AI框架的聊天机器人项目为例,该项目需要实现根据用户提供的文档数据进行回复的功能。由于对话有最大Token的限制,无法直接将所有的数据发给AI模型进行处理。因此,决定采用数据向量化的方式,将文档数据存储到VectorStore中,并在用户发起对话之前从VectorStore中检索一组相似的文档作为上下文信息。具体实现步骤如下:

  1. 引入依赖:在项目的pom.xml文件中引入Spring AI框架以及向量数据库相关的依赖。
  2. 配置VectorStore:在application.properties或application.yml文件中配置VectorStore的连接信息以及嵌入模型等参数。
  3. 创建文档嵌入服务:利用Spring AI框架提供的EmbeddingClient将文档转换为向量嵌入,并存储到VectorStore中。
  4. 实现相似性搜索:在用户发起对话之前,从VectorStore中检索一组相似的文档作为上下文信息。
  5. 整合AI模型:将检索到的上下文信息与用户的查询一起发送到AI模型中进行处理,并返回处理结果给用户。

五、VectorStore&ES8

1、添加依赖
首先,在Spring Boot项目的构建文件中(如pom.xml对于Maven项目,或build.gradle对于Gradle项目)添加Elasticsearch客户端的依赖。由于Spring AI框架可能不直接支持Elasticsearch作为VectorStore,需要使用Elasticsearch的Java客户端库来与Elasticsearch进行交互。

<!-- Maven 示例 -->
<dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-elasticsearch-store</artifactId>
            <version>${spring-ai.version}</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-elasticsearch-store-spring-boot-starter</artifactId>
            <version>${spring-ai.version}</version>
        </dependency>

2、配置Elasticsearch连接
在Spring Boot的配置文件中(如application.properties或application.yml),配置Elasticsearch的连接信息,包括集群地址、端口和可能的认证信息。

spring:
  profiles:
    active: druid
  elasticsearch:
    uris: http://127.0.0.1:9200/      #请改成自己的路径
  ai:
    ollama:
      base-url: http://localhost:11434
      embedding:
        model: llama3.2
    vectorstore:
      elasticsearch:
        initialize-schema: true         #请不要修改此配置
        index-name: zixiai           #这是 zixiai 默认的索引,请不要修改或删除
        dimensions: 2048                #不要修改这个配置,与具体大模型本身的维度参数有关系
        similarity: cosine
        batching-strategy: TOKEN_COUNT 

3、业务代码

    @Override
    public String embed(String msg, Set<String> fileIds) {
        log.debug("embedding... {}", msg);

        Set<String> finalFileIds = (fileIds == null) ? new HashSet<>() : fileIds;
        List<Document> st = vectorStore.similaritySearch(SearchRequest.builder().query(msg).topK(5).build());
//                .similaritySearch(SearchRequest.query(msg).withTopK(5));
        // 首先查询向量库
        String promptContent = null;
        if (!CollectionUtils.isEmpty(st)) {
            promptContent = st.stream()
                    .filter(doc -> {
                        if (CollectionUtils.isEmpty(finalFileIds)) {
                            return true;
                        }
                        Object fileIdObject = doc.getMetadata().get("file_id");
                        String docFileId = fileIdObject != null ? fileIdObject.toString() : null;
                        return finalFileIds.contains(docFileId);
                    })
                    .map(Document::getText)
                    .filter(StringUtils::hasText)
                    .collect(Collectors.joining(" "));
        }

        // 确保 promptContent 不为空
        if (!StringUtils.hasText(promptContent)) {
            promptContent = "No information found in the database.";
        }

        log.debug("Prompt content: {}", promptContent);

        return chatClient
                .prompt(promptContent)
                .user(msg)
                .call()
                .content();
    }

详细样例代码:样例

综上所述,Spring AI中的
VectorStore为开发者提供了高效、灵活的向量数据存储与检索解决方案。通过集成VectorStore,开发者可以轻松实现AI应用中的相似性搜索功能,从而提升应用的智能化水平和用户体验。


http://www.kler.cn/a/472480.html

相关文章:

  • 对快速由表及里说拜拜/如何正确运用由表及里
  • c++ 17 constexpr
  • 机器学习免费使用的数据集及网站链接
  • 探索大型语言模型新架构:从 MoE 到 MoA
  • AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
  • rabbitmq——岁月云实战笔记
  • 刚体变换矩阵的逆
  • Godot最佳实践个人转述
  • Django中自定义模板字符串
  • Qt QDockWidget详解以及例程
  • 随机梯度下降(SGD)算法的深度剖析与应用探索
  • STM32L051芯片 超低功耗特性概览
  • 高级数据库系统 复习提纲
  • 空间不足导致Oracle集群内存使用率暴增
  • ctfshow 每日练习 web 区 php特性 1-10
  • Java将String类型的html文本中的img路径替换前缀
  • css预处理器sass
  • 设计基于检索增强生成的个性化语言模型(RAG-based LLM)
  • 深入了解 StarRocks 表类型:解锁高效数据分析的密码
  • 基于Spring Boot的电子文档交易系统
  • BERT:深度双向Transformer的预训练用于语言理解
  • 【Nginx】设置https和http同时使用同一个端口访问
  • 极客说|微软 Phi 系列小模型和多模态小模型
  • “深入浅出”系列之FFmpeg:(1)音视频开发基础
  • 【Vue3项目实战系列一】—— 全局样式处理,导入view-ui-plus组件库,定制个性主题
  • springboot3 redis 常用操作工具类