第P5周-Pytorch实现运动鞋品牌识别
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch
(二)具体步骤
时间关系,代码很差…
1. utils.py
针对数据文件的目录情况进行了优化
import torch
import pathlib
import matplotlib.pyplot as plt
from torchvision.transforms import transforms
# 第一步:设置GPU
def USE_GPU():
if torch.cuda.is_available():
print('CUDA is available, will use GPU')
device = torch.device("cuda")
else:
print('CUDA is not available. Will use CPU')
device = torch.device("cpu")
return device
temp_dict = dict()
def recursive_iterate(path):
"""
根据所提供的路径遍历该路径下的所有子目录,列出所有子目录下的文件
:param path: 路径
:return: 返回最后一级目录的数据
""" path = pathlib.Path(path)
for file in path.iterdir():
if file.is_file():
temp_key = str(file).split('\\')[-2]
if temp_key in temp_dict:
temp_dict.update({temp_key: temp_dict[temp_key] + 1})
else:
temp_dict.update({temp_key: 1})
# print(file)
elif file.is_dir():
recursive_iterate(file)
return temp_dict
def data_from_directory(directory, train_dir=None, test_dir=None, show=False):
"""
提供是的数据集是文件形式的,提供目录方式导入数据,简单分析数据并返回数据分类
:param test_dir: 是否设置了测试集目录
:param train_dir: 是否设置了训练集目录
:param directory: 数据集所在目录
:param show: 是否需要以柱状图形式显示数据分类情况,默认显示
:return: 数据分类列表,类型: list
""" global total_image
print("数据目录:{}".format(directory))
data_dir = pathlib.Path(directory)
# for d in data_dir.glob('**/*'): # **/*通配符可以遍历所有子目录
# if d.is_dir():
# print(d) class_name = []
total_image = 0
temp_sum = 0
if train_dir is None or test_dir is None:
data_path = list(data_dir.glob('*'))
class_name = [str(path).split('\\')[-1] for path in data_path]
print("数据分类: {}, 类别数量:{}".format(class_name, len(list(data_dir.glob('*')))))
total_image = len(list(data_dir.glob('*/*')))
print("图片数据总数: {}".format(total_image))
else:
temp_dict.clear()
train_data_path = directory + '/' + train_dir
train_data_info = recursive_iterate(train_data_path)
print("{}目录:{},{}".format(train_dir, train_data_path, train_data_info))
temp_dict.clear()
test_data_path = directory + '/' + test_dir
print("{}目录:{},{}".format(test_dir, test_data_path, recursive_iterate(test_data_path)))
class_name = temp_dict.keys()
if show:
# 隐藏警告
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
for i in class_name:
data = len(list(pathlib.Path((directory + '\\' + i + '\\')).glob('*')))
plt.title('数据分类情况')
plt.grid(ls='--', alpha=0.5)
plt.bar(i, data)
plt.text(i, data, str(data), ha='center', va='bottom')
print("类别-{}:{}".format(i, data))
temp_sum += data
plt.show()
if temp_sum == total_image:
print("图片数据总数检查一致")
else:
print("数据数据总数检查不一致,请检查数据集是否正确!")
return class_name
def get_transforms_setting(size):
"""
获取transforms的初始设置
:param size: 图片大小
:return: transforms.compose设置
""" transform_setting = {
'train': transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
return transform_setting
**2.**model.py
将CNN网络模板写到一个单独文件里,方便调用。
import torch.nn as nn
import torch
import torch.nn.functional as F
class Model_Shoes(nn.Module):
def __init__(self, classNames):
super(Model_Shoes, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
nn.BatchNorm2d(12),
nn.ReLU())
self.conv2 = nn.Sequential(
nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
nn.BatchNorm2d(12),
nn.ReLU())
self.pool3 = nn.Sequential(
nn.MaxPool2d(2)) # 12*108*108
self.conv4 = nn.Sequential(
nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
nn.BatchNorm2d(24),
nn.ReLU())
self.conv5 = nn.Sequential(
nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
nn.BatchNorm2d(24),
nn.ReLU())
self.pool6 = nn.Sequential(
nn.MaxPool2d(2)) # 24*50*50
self.dropout = nn.Sequential(
nn.Dropout(0.2))
self.fc = nn.Sequential(
nn.Linear(24 * 50 * 50, len(classNames)))
def forward(self, x):
batch_size = x.size(0)
x = self.conv1(x) # 卷积-BN-激活
x = self.conv2(x) # 卷积-BN-激活
x = self.pool3(x) # 池化
x = self.conv4(x) # 卷积-BN-激活
x = self.conv5(x) # 卷积-BN-激活
x = self.pool6(x) # 池化
x = self.dropout(x)
x = x.view(batch_size, -1) # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
x = self.fc(x)
return x
3. config.py
将训练的相关参数写到config.py中
import argparse
def get_options(parser=argparse.ArgumentParser()):
parser.add_argument('--workers', type=int, default=0, help='Number of parallel workers')
parser.add_argument('--batch-size', type=int, default=32, help='input batch size, default=32')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate, default=0.0001')
parser.add_argument('--epochs', type=int, default=50, help='number of epochs')
parser.add_argument('--seed', type=int, default=112, help='random seed')
parser.add_argument('--save-path', type=str, default='./models/', help='path to save checkpoints')
opt = parser.parse_args()
if opt:
print(f'num_workers:{opt.workers}')
print(f'batch_size:{opt.batch_size}')
print(f'learn rate:{opt.lr}')
print(f'epochs:{opt.epochs}')
print(f'random seed:{opt.seed}')
print(f'save_path:{opt.save_path}')
return opt
if __name__ == '__main__':
opt = get_options()
**4. main.py
from torch import nn
from torchvision import datasets
from Utils import USE_GPU, data_from_directory, get_transforms_setting
import torch
import os, PIL, pathlib
from model import Model_Shoes
import config
opt = config.get_options()
print(opt)
device = USE_GPU()
DATA_DIR = "./data/shoes"
classNames = data_from_directory(DATA_DIR, train_dir="train", test_dir="test")
print(list(classNames))
transforms_setting = get_transforms_setting([224, 224])
train_dataset = datasets.ImageFolder(DATA_DIR + "/train", transforms_setting['train'])
test_dataset = datasets.ImageFolder(DATA_DIR + "/test", transforms_setting['test'])
print(train_dataset.class_to_idx)
batch_size = opt.batch_size
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
for X, y in test_dl:
print("Shape of X[N, C, H, W]:", X.shape)
print("Shape of y", y.shape, y.dtype)
break
model = Model_Shoes(classNames).to(device)
print(model)
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
def adjust_learning_rate(optimizer, epoch, start_lr):
# 每 2 个epoch衰减到原来的 0.92 lr = start_lr * (0.92 ** (epoch // 2))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
learn_rate = opt.lr # 初始学习率
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = opt.epochs
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
# 更新学习率(使用自定义学习率时使用)
adjust_learning_rate(optimizer, epoch, learn_rate)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
epoch_test_acc * 100, epoch_test_loss, lr))
print('Done')
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
# 模型保存
MODEL_SAVE_NAME = "cnn-shoes.pth"
torch.save(model.state_dict(), opt.save_path + MODEL_SAVE_NAME)
**5. 预测指定图片
import torch
from model import Model_Shoes
from Utils import USE_GPU, get_transforms_setting
from PIL import Image
from PIL import Image
device = USE_GPU()
transform_setting = get_transforms_setting([224, 224])
classes = ['adidas', 'nike']
model = Model_Shoes(classes)
model.load_state_dict(torch.load('./models/cnn-shoes.pth', map_location=device))
model.to(device)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_, pred = torch.max(output, 1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./mydata/shoes/1.png',
model=model,
transform=transform_setting['train'],
classes=classes)
(三)总结
本次学习对于构建CNN网络中的 nn.BatchNorm2d()做了初步的了解,nn.BatchNorm2d()进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定,BatchNorm2d()函数数学原理如下:
BatchNorm2d()内部的参数如下:
1.num_features:一般输入参数为batch_sizenum_featuresheight*width,即为其中特征的数量
2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5
3.momentum:一个用于运行过程中均值和方差的一个估计参数(我的理解是一个稳定系数,类似于SGD中的momentum的系数)
4.affine:当设为true时,会给定可以学习的系数矩阵gamma和beta
参考链接:https://blog.csdn.net/bigFatCat_Tom/article/details/91619977