Java面试核心知识4
公平锁与非公平锁
公平锁(Fair)
加锁前检查是否有排队等待的线程,优先排队等待的线程,先来先得
非公平锁(Nonfair)
加锁时不考虑排队等待问题,直接尝试获取锁,获取不到自动到队尾等待
1. 非公平锁性能比公平锁高5~10倍,因为公平锁需要在多核的情况下维护一个队列 。
2. Java中的synchronized是非公平锁,ReentrantLock 默认的lock()方法采用的是非公平锁。
ReadWriteLock 读写锁
为了提高性能,Java 提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控制,如 果没有写锁的情况下,读是无阻塞的,在一定程度上提高了程序的执行效率。读写锁分为读锁和写 锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可。
读锁
如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁
写锁
如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。总之,读的时候上 读锁,写的时候上写锁!
Java 中读写锁有个接口 java.util.concurrent.locks.ReadWriteLock , 也 有 具 体的实 现 ReentrantReadWriteLock。
共享锁和独占锁
java 并发包提供的加锁模式分为独占锁和共享锁。
独占锁
独占锁模式下,每次只能有一个线程能持有锁,ReentrantLock 就是以独占方式实现的互斥锁。 独占锁是一种悲观保守的加锁策略,它避免了读/读冲突,如果某个只读线程获取锁,则其他读线 程都只能等待,这种情况下就限制了不必要的并发性,因为读操作并不会影响数据的一致性。
共享锁
共享锁则允许多个线程同时获取锁,并发访问 共享资源,如:ReadWriteLock。共享锁则是一种 乐观锁,它放宽了加锁策略,允许多个执行读操作的线程同时访问共享资源。
1. AQS的内部类Node定义了两个常量SHARED和EXCLUSIVE,他们分别标识 AQS队列中等 待线程的锁获取模式。
2. java的并发包中提供了ReadWriteLock,读-写锁。它允许一个资源可以被多个读操作访问, 或者被一个 写操作访问,但两者不能同时进行。
重量级锁(Mutex Lock)
Synchronized 是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又 是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用 户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么 Synchronized 效率低的原因。因此,这种依赖于操作系统 Mutex Lock 所实现的锁我们称之为 “重量级锁”。JDK中对Synchronized做的种种优化,其核心都是为了减少这种重量级锁的使用。 JDK1.6 以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了“轻量级锁”和 “偏向锁”。
轻量级锁
锁的状态总共有四种:无锁状态、偏向锁、轻量级锁和重量级锁。
锁升级
随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁(但是锁的升级是单向的, 也就是说只能从低到高升级,不会出现锁的降级)。
“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是, 轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量 级锁使用产生的性能消耗。在解释轻量级锁的执行过程之前,先明白一点,轻量级锁所适应的场 景是线程交替执行同步块的情况,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀 为重量级锁。
偏向锁
Hotspot 的作者经过以往的研究发现大多数情况下锁不仅不存在多线程竞争,而且总是由同一线 程多次获得。偏向锁的目的是在某个线程获得锁之后,消除这个线程锁重入(CAS)的开销,看起 来让这个线程得到了偏护。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级 锁执行路径,因为轻量级锁的获取及释放依赖多次 CAS 原子指令,而偏向锁只需要在置换 ThreadID的时候依赖一次CAS原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所 以偏向锁的撤销操作的性能损耗必须小于节省下来的 CAS 原子指令的性能消耗)。上面说过,轻 量级锁是为了在线程交替执行同步块时提高性能,而偏向锁则是在只有一个线程执行同步块时进 一步提高性能。
分段锁
分段锁也并非一种实际的锁,而是一种思想ConcurrentHashMap是学习分段锁的最好实践
锁优化
减少锁持有时间
只用在有线程安全要求的程序上加锁
减小锁粒度
将大对象(这个对象可能会被很多线程访问),拆成小对象,大大增加并行度,降低锁竞争。 降低了锁的竞争,偏向锁,轻量级锁成功率才会提高。最最典型的减小锁粒度的案例就是 ConcurrentHashMap。
锁分离
最常见的锁分离就是读写锁ReadWriteLock,根据功能进行分离成读锁和写锁,这样读读不互 斥,读写互斥,写写互斥,即保证了线程安全,又提高了性能,具体也请查看[高并发Java 五] JDK 并发包1。读写分离思想可以延伸,只要操作互不影响,锁就可以分离。比如 LinkedBlockingQueue 从头部取出,从尾部放数据
锁粗化
通常情况下,为了保证多线程间的有效并发,会要求每个线程持有锁的时间尽量短,即在使用完 公共资源后,应该立即释放锁。但是,凡事都有一个度,如果对同一个锁不停的进行请求、同步 和释放,其本身也会消耗系统宝贵的资源,反而不利于性能的优化 。
锁消除
锁消除是在编译器级别的事情。在即时编译器时,如果发现不可能被共享的对象,则可以消除这 些对象的锁操作,多数是因为程序员编码不规范引起。
参考:https://www.jianshu.com/p/39628e1180a9
线程基本方法
线程相关的基本方法有wait,notify,notifyAll,sleep,join,yield等。
线程等待(wait)
调用该方法的线程进入WAITING状态,只有等待另外线程的通知或被中断才会返回,需要注意的 是调用wait()方法后,会释放对象的锁。因此,wait方法一般用在同步方法或同步代码块中。
线程睡眠(sleep)
sleep 导致当前线程休眠,与wait方法不同的是sleep不会释放当前占有的锁,sleep(long)会导致 线程进入TIMED-WATING状态,而wait()方法会导致当前线程进入WATING状态
线程让步(yield)
yield 会使当前线程让出CPU 执行时间片,与其他线程一起重新竞争CPU时间片。一般情况下, 优先级高的线程有更大的可能性成功竞争得到 CPU 时间片,但这又不是绝对的,有的操作系统对 线程优先级并不敏感。
线程中断(interrupt)
中断一个线程,其本意是给这个线程一个通知信号,会影响这个线程内部的一个中断标识位。这 个线程本身并不会因此而改变状态(如阻塞,终止等)。
1. 调用interrupt()方法并不会中断一个正在运行的线程。也就是说处于 Running 状态的线 程并不会因为被中断而被终止,仅仅改变了内部维护的中断标识位而已。
2. 若调用sleep()而使线程处于TIMED-WATING状态,这时调用interrupt()方法,会抛出 InterruptedException,从而使线程提前结束TIMED-WATING状态。
3. 许多声明抛出InterruptedException的方法(如Thread.sleep(long mills方法)),抛出异 常前,都会清除中断标识位,所以抛出异常后,调用 isInterrupted()方法将会返回 false。
4. 中断状态是线程固有的一个标识位,可以通过此标识位安全的终止线程。比如,你想终止 一个线程thread的时候,可以调用thread.interrupt()方法,在线程的run方法内部可以 根据thread.isInterrupted()的值来优雅的终止线程。
Join 等待其他线程终止
join() 方法,等待其他线程终止,在当前线程中调用一个线程的 join() 方法,则当前线程转为阻塞 状态,回到另一个线程结束,当前线程再由阻塞状态变为就绪状态,等待 cpu 的宠幸。
为什么要用join()方法?
很多情况下,主线程生成并启动了子线程,需要用到子线程返回的结果,也就是需要主线程需要 在子线程结束后再结束,这时候就要用到 join() 方法。
System.out.println(Thread.currentThread().getName() + "线程运行开始!");
Thread6 thread1 = new Thread6();
thread1.setName("线程 B");
thread1.join();
System.out.println("这时 thread1 执行完毕之后才能执行主线程");
线程唤醒(notify)
Object 类中的 notify() 方法,唤醒在此对象监视器上等待的单个线程,如果所有线程都在此对象 上等待,则会选择唤醒其中一个线程,选择是任意的,并在对实现做出决定时发生,线程通过调 用其中一个 wait() 方法,在对象的监视器上等待,直到当前的线程放弃此对象上的锁定,才能继 续执行被唤醒的线程,被唤醒的线程将以常规方式与在该对象上主动同步的其他所有线程进行竞 争。类似的方法还有 notifyAll() ,唤醒再次监视器上等待的所有线程。
其他方法:
1. sleep():强迫一个线程睡眠N毫秒。
2. isAlive(): 判断一个线程是否存活。
3. join(): 等待线程终止。
4. activeCount(): 程序中活跃的线程数。
5. enumerate(): 枚举程序中的线程。
6. currentThread(): 得到当前线程。
7. isDaemon(): 一个线程是否为守护线程。
8. setDaemon(): 设置一个线程为守护线程。(用户线程和守护线程的区别在于,是否等待主线 程依赖于主线程结束而结束)
9. setName(): 为线程设置一个名称。
10. wait(): 强迫一个线程等待。
11. notify(): 通知一个线程继续运行。
12. setPriority(): 设置一个线程的优先级。
13. getPriority()::获得一个线程的优先级。
线程上下文切换
巧妙地利用了时间片轮转的方式, CPU给每个任务都服务一定的时间,然后把当前任务的状态保存 下来,在加载下一任务的状态后,继续服务下一任务,任务的状态保存及再加载, 这段过程就叫做 上下文切换。时间片轮转的方式使多个任务在同一颗CPU上执行变成了可能。
进程 (有时候也称做任务)
是指一个程序运行的实例。在Linux系统中,线程就是能并行运行并且 与他们的父进程(创建他们的进程)共享同一地址空间(一段内存区域)和其他资源的轻量 级的进程。
上下文
是指某一时间点 CPU 寄存器和程序计数器的内容。
寄存器
是 CPU 内部的数量较少但是速度很快的内存(与之对应的是 CPU 外部相对较慢的 RAM 主内 存)。寄存器通过对常用值(通常是运算的中间值)的快速访问来提高计算机程序运行的速 度。
程序计数器
是一个专用的寄存器,用于表明指令序列中 CPU 正在执行的位置,存的值为正在执行的指令 的位置或者下一个将要被执行的指令的位置,具体依赖于特定的系统。
PCB-“切换桢”
上下文切换可以认为是内核(操作系统的核心)在 CPU 上对于进程(包括线程)进行切换,上下 文切换过程中的信息是保存在进程控制块(PCB, process control block)中的。PCB还经常被称 作“切换桢”(switchframe)。信息会一直保存到CPU的内存中,直到他们被再次使用。
上下文切换的活动:
1. 挂起一个进程,将这个进程在 CPU 中的状态(上下文)存储于内存中的某处。
2. 在内存中检索下一个进程的上下文并将其在 CPU 的寄存器中恢复。
3. 跳转到程序计数器所指向的位置(即跳转到进程被中断时的代码行),以恢复该进程在程序 中。
引起线程上下文切换的原因
1. 当前执行任务的时间片用完之后,系统CPU正常调度下一个任务;
2. 当前执行任务碰到IO阻塞,调度器将此任务挂起,继续下一任务;
3. 多个任务抢占锁资源,当前任务没有抢到锁资源,被调度器挂起,继续下一任务;
4. 用户代码挂起当前任务,让出CPU时间;
5. 硬件中断;
同步锁与死锁
同步锁
当多个线程同时访问同一个数据时,很容易出现问题。为了避免这种情况出现,我们要保证线程 同步互斥,就是指并发执行的多个线程,在同一时间内只允许一个线程访问共享数据。 Java 中可 以使用synchronized关键字来取得一个对象的同步锁。
死锁
何为死锁,就是多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。
线程池原理
线程池做的工作主要是控制运行的线程的数量,处理过程中将任务放入队列,然后在线程创建后 启动这些任务,如果线程数量超过了最大数量超出数量的线程排队等候,等其它线程执行完毕, 再从队列中取出任务来执行。他的主要特点为:线程复用;控制最大并发数;管理线程。
线程复用
每一个 Thread 的类都有一个 start 方法。 当调用start启动线程时Java虚拟机会调用该类的 run 方法。 那么该类的 run() 方法中就是调用了 Runnable 对象的 run() 方法。 我们可以继承重写 Thread 类,在其 start 方法中添加不断循环调用传递过来的 Runnable 对象。 这就是线程池的实 现原理。循环方法中不断获取 Runnable 是用 Queue 实现的,在获取下一个 Runnable 之前可以 是阻塞的。
线程池的组成
一般的线程池主要分为以下4个组成部分:
1. 线程池管理器:用于创建并管理线程池
2. 工作线程:线程池中的线程
3. 任务接口:每个任务必须实现的接口,用于工作线程调度其运行
4. 任务队列:用于存放待处理的任务,提供一种缓冲机制
Java 中的线程池是通过 Executor 框架实现的,该框架中用到了 Executor,Executors, ExecutorService,ThreadPoolExecutor ,Callable 和 Future、FutureTask 这几个类。
ThreadPoolExecutor 的构造方法如下:
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
1. corePoolSize:指定了线程池中的线程数量。
2. maximumPoolSize:指定了线程池中的最大线程数量。
3. keepAliveTime:当前线程池数量超过corePoolSize时,多余的空闲线程的存活时间,即多 次时间内会被销毁。
4. unit:keepAliveTime 的单位。
5. workQueue:任务队列,被提交但尚未被执行的任务。
6. threadFactory:线程工厂,用于创建线程,一般用默认的即可。
7. handler:拒绝策略,当任务太多来不及处理,如何拒绝任务。
拒绝策略
线程池中的线程已经用完了,无法继续为新任务服务,同时,等待队列也已经排满了,再也 塞不下新任务了。这时候我们就需要拒绝策略机制合理的处理这个问题。
JDK 内置的拒绝策略如下:
1. AbortPolicy : 直接抛出异常,阻止系统正常运行。
2. CallerRunsPolicy : 只要线程池未关闭,该策略直接在调用者线程中,运行当前被丢弃的 任务。显然这样做不会真的丢弃任务,但是,任务提交线程的性能极有可能会急剧下降。
3. DiscardOldestPolicy : 丢弃最老的一个请求,也就是即将被执行的一个任务,并尝试再 次提交当前任务。
4. DiscardPolicy : 该策略默默地丢弃无法处理的任务,不予任何处理。如果允许任务丢 失,这是最好的一种方案。
以上内置拒绝策略均实现了RejectedExecutionHandler接口,若以上策略仍无法满足实际 需要,完全可以自己扩展RejectedExecutionHandler接口。
Java 线程池工作过程
1. 线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面 有任务,线程池也不会马上执行它们。
2. 当调用 execute() 方法添加一个任务时,线程池会做如下判断:
a) 如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
b) 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列;
c) 如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要 创建非核心线程立刻运行这个任务;
d) 如果队列满了,而且正在运行的线程数量大于或等于 maximumPoolSize,那么线程池 会抛出异常RejectExecutionException。
3. 当一个线程完成任务时,它会从队列中取下一个任务来执行。
4. 当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运 行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它 最终会收缩到 corePoolSize 的大小。
JAVA阻塞队列原理
阻塞队列,关键字是阻塞,先理解阻塞的含义,在阻塞队列中,线程阻塞有这样的两种情况:
1. 当队列中没有数据的情况下,消费者端的所有线程都会被自动阻塞(挂起),直到有数据放 入队列。
2. 当队列中填满数据的情况下,生产者端的所有线程都会被自动阻塞(挂起),直到队列中有 空的位置,线程被自动唤醒。
阻塞队列的主要方法
抛出异常:抛出一个异常;
特殊值:返回一个特殊值(null或false,视情况而定)
则塞:在成功操作之前,一直阻塞线程
超时:放弃前只在最大的时间内阻塞
插入操作:
1:public abstract boolean add(E paramE):将指定元素插入此队列中(如果立即可行 且不会违反容量限制),成功时返回 true,如果当前没有可用的空间,则抛 出 IllegalStateException。如果该元素是NULL,则会抛出NullPointerException异常。
2:public abstract boolean offer(E paramE):将指定元素插入此队列中(如果立即可行 且不会违反容量限制),成功时返回 true,如果当前没有可用的空间,则返回 false。
3:public abstract void put(E paramE) throws InterruptedException: 将指定元素插 入此队列中,将等待可用的空间(如果有必要)
public void put(E paramE) throws InterruptedException {
checkNotNull(paramE);
ReentrantLock localReentrantLock = this.lock;
localReentrantLock.lockInterruptibly();
try {
while (this.count == this.items.length)
this.notFull.await();//如果队列满了,则线程阻塞等待
enqueue(paramE);
localReentrantLock.unlock();
} finally {
localReentrantLock.unlock();
}
}
4:offer(E o, long timeout, TimeUnit unit):可以设定等待的时间,如果在指定的时间 内,还不能往队列中加入BlockingQueue,则返回失败。
获取数据操作:
1:poll(time):取走 BlockingQueue 里排在首位的对象,若不能立即取出,则可以等time参数 规定的时间,取不到时返回null;
2:poll(long timeout, TimeUnit unit):从 BlockingQueue 取出一个队首的对象,如果在 指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则直到时间超时还没有数 据可取,返回失败。
3:take():取走 BlockingQueue 里排在首位的对象,若BlockingQueue为空,阻断进入等待状 态直到BlockingQueue有新的数据被加入。
4.drainTo():一次性从 BlockingQueue 获取所有可用的数据对象(还可以指定获取数据的个 数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。
Java 中的阻塞队列
1. ArrayBlockingQueue :由数组结构组成的有界阻塞队列。
2. LinkedBlockingQueue :由链表结构组成的有界阻塞队列。
3. PriorityBlockingQueue :支持优先级排序的无界阻塞队列。
4. DelayQueue:使用优先级队列实现的无界阻塞队列。
5. SynchronousQueue:不存储元素的阻塞队列。
6. LinkedTransferQueue:由链表结构组成的无界阻塞队列。
7. LinkedBlockingDeque:由链表结构组成的双向阻塞队列
ArrayBlockingQueue(公平、非公平)
用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认情况下 不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的所有生产者线程或消费者线程,当 队列可用时,可以按照阻塞的先后顺序访问队列,即先阻塞的生产者线程,可以先往队列里插入 元素,先阻塞的消费者线程,可以先从队列里获取元素。通常情况下为了保证公平性会降低吞吐 量。我们可以使用以下代码创建一个公平的阻塞队列: ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);
LinkedBlockingQueue(两个独立锁提高并发)
基于链表的阻塞队列,同ArrayListBlockingQueue类似,此队列按照先进先出(FIFO)的原则对 元素进行排序。而LinkedBlockingQueue 之所以能够高效的处理并发数据,还因为其对于生产者 端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费 者可以并行地操作队列中的数据,以此来提高整个队列的并发性能。 LinkedBlockingQueue 会默认一个类似无限大小的容量(Integer.MAX_VALUE)。
PriorityBlockingQueue(compareTo 排序实现优先)
是一个支持优先级的无界队列。默认情况下元素采取自然顺序升序排列。可以自定义实现 compareTo()方法来指定元素进行排序规则,或者初始化 PriorityBlockingQueue 时,指定构造 参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。
DelayQueue(缓存失效、定时任务 )
是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实 现 Delayed 接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才 能从队列中提取元素。我们可以将DelayQueue运用在以下应用场景: 1. 缓存系统的设计:可以用 DelayQueue 保存缓存元素的有效期,使用一个线程循环查询 DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
2. 定时任务调度:使用 DelayQueue 保存当天将会执行的任务和执行时间,一旦从 DelayQueue 中获取到任务就开始执行,从比如TimerQueue就是使用DelayQueue实现的。
SynchronousQueue(不存储数据、可用于传递数据)
是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。 SynchronousQueue 可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线 程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给 另外一个线程使用,SynchronousQueue 的吞吐量高于 LinkedBlockingQueue 和 ArrayBlockingQueue。
LinkedTransferQueue
是一个由链表结构组成的无界阻塞 TransferQueue 队列。相对于其他阻塞队列, LinkedTransferQueue 多了 tryTransfer 和 transfer 方法。
1. transfer 方法:如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的 poll()方法时),transfer 方法可以把生产者传入的元素立刻 transfer(传输)给消费者。如 果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素 被消费者消费了才返回。
2. tryTransfer 方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费 者等待接收元素,则返回false。和 transfer 方法的区别是 tryTransfer 方法无论消费者是否 接收,方法立即返回。而transfer方法是必须等到消费者消费了才返回。
对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传 入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时 还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。
LinkedBlockingDeque
是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。 双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其 他的阻塞队列,LinkedBlockingDeque 多了 addFirst,addLast,offerFirst,offerLast, peekFirst,peekLast 等方法,以 First 单词结尾的方法,表示插入,获取(peek)或移除双端队 列的第一个元素。以 Last 单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另 外插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同 于takeFirst,不知道是不是Jdk的bug,使用时还是用带有First和Last后缀的方法更清楚。 在初始化LinkedBlockingDeque 时可以设置容量防止其过渡膨胀。另外双向阻塞队列可以运用在 “工作窃取”模式中。