当前位置: 首页 > article >正文

如何使用Ultralytics训练自己的yolo5 yolo8 yolo10 yolo11等目标检测模型

Ultralytics正在以惊人的速度吸收优秀的CV算法,之前Ultralytics定位于YOLOV8,但逐渐地扩展到支持其他版本的YOLO,最新版本的ultralytics全面支持yolo5 yolo7 yolo8 yolo9 yolo10 yolo11,包含模型的训练、验证、预测、部署等。毫无疑问,Ultralytics也会支持后续的YOLO版本,比如yolo12、yolo13......本文介绍如何用Ultralytics训练自己的yolo5 yolo8 yolo9 yolo10 yolo11模型,我们开门见山,直接步入正题。

前言:借助Ultralytics框架在自己的数据集上训练yolo5 yolo8 yolo9 yolo10 yolo11等模型首先需要配置好Ultralytics的环境,如果不会配置Ultralytics环境可以参考本人主页的另一篇文章

提醒:使用GPU训练会大幅度加快训练,有英伟达GPU的一定要配置GPU训练环境,没有英伟达显卡的只能采用CPU训练,但是一般不建议。 (GPU、CPU训练环境的配置具体见上面的文章链接)

第一章节:准备好数据集

配置好Ultralytics环境之后,需要准备好YOLO格式的数据集(也称txt格式),该数据集可以通过数据集标注软件 labelme、labelimg对图片进行拉框标注得到。具体标注教程见本人主页的另外一篇文章

经过标注软件标注好的yolo数据集的格式通常为:

class_id        x                y            w           h

class_id: 类别的id编号
x: 目标的中心点x坐标(横向) /图片总宽度
y: 目标的中心的y坐标(纵向) /图片总高度
w:目标框的宽度/图片总宽度
h: 目标框的高度/图片总高度

下图为一张图片按照yolo格式进行标注的txt标注文件 

在进行训练之前,还需要对数据集进行划分,一般是按照7:2:1的比例划分训练集(train)、验证集(val)、测试集(test) 或者按照8:2的比例划分训练集与验证集。

提醒:用Ultralytics训练自己的模型必须至少要把数据集划分出训练集与验证集,可以不划分测试集,训练集与验证集不可或缺,否则不能数据集进行模型训练。我这里只划分训练集与验证集,并且训练集与验证集应该是下面的目录结构

train
├── images
└── labels

val
├── images
└── labels

下面以葡萄叶片病虫害数据集为例,给出训练集、验证集目录结构的参考示例

注意,这里以葡萄叶片病虫害数据集为例,其他的数据集,比如什么安全帽数据集、机动车数据集.......只要数据集格式为YOLO目标检测数据集格式,那么数据集训练教程都跟这里的葡萄叶片病虫害数据集训练教程是一模一样的。

 

 

在训练之前,我们不仅要把数据集划分成训练集、验证集,还需要给出类别标签yaml文件,该文件是Ultralytics在训练过程中所必须的。也就是说,一个完整的,可以直接用于模型训练的数据集应该具有以下目录结构:

data.yaml的内容如下图所示: 

其中train、val指定训练集与验证集的路径地址(最好写成绝对路径) 

nc代表该数据集有几个类别,我这里的葡萄叶片病虫害数据集有四个类别

names代表具体的类别名称。可以以数组的形式给出,但请注意类别名称需要以英文或数字呈现,不能含有任何特殊字符或者中文字符。

提醒:yaml文件是必须的,如果你拿到的数据集不含这个文件,那么你要按照上面的格式自己手动写了,书写时需要严格按照yaml文件的格式(冒号后面是有一个空格的)

第二章节:开始训练

搞深度学习,绝大部分都是在linux系统上进行炼丹的。考虑到有的读者可能对Linux不熟悉,本章节首先给出win系统训练教程,然后再给出linux系统训练步骤。

注意:在训练的过程中,有英伟达显卡的一定要用GPU训练,用CPU训练是特别缓慢的。

2.1 训练参数

只要安装好了ultralytics,模型训练就变得非常简单。训练方式有多种,可以通过py程序训练(自己写几行Python代码),也可以在命令行训练(无需书写任何python代码)。

我们这里以py程序训练为例:

无论是在win系统还是linux系统,训练的代码基本都是一致的,只有极个别参数会因为系统的不同出现差异。

下面我以yolov8训练教程为例,其余yolo5 yolo9 yolo10 yolo11等是一样的步骤

from ultralytics import YOLO

# 这里有三种训练方式,三种任选其一

#第一种:根据yaml文件构建一个新模型进行训练,若对YOLO8网络进行了修改(比如添加了注意力机制)适合选用此种训练方式。但请注意这种训练方式是重头训练(一切参数都要自己训练),训练时间、资源消耗都是十分巨大的
model = YOLO('yolov8n.yaml')  # build a new model from YAML

#第二种:加载一个预训练模型,在此基础之前上对参数进行调整。这种方式是深度学习界最最主流的方式。由于大部分参数已经训练好,我们仅需根据数据集对模型的部分参数进行微调,因此训练时间最短,计算资源消耗最小。
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

#第三种:根据yaml文件构建一个新模型,然后将预训练模型的参数转移到新模型中,然后进行训练,对YOLO8网络进行改进的适合选用此种训练方式,而且训练时间不至于过长
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
#data参数指定数据集yaml文件(我这里data.yaml与train、val文件夹同目录)
#epochs指定训练多少轮
#imgsz指定图片大小
results = model.train(data='data.yaml', epochs=100, imgsz=640)

上面就是模型训练代码,那么简单吗,是不是搞错了?没错,在ultralytics框架的封装之下,训练代码就下面这三行。 

from ultralytics import YOLO

model = YOLO('yolov8n.pt') 

results = model.train(data='data.yaml', epochs=100, imgsz=640)

有人可能有疑问了。上述训练方式一的yolov8n.yaml是哪来的怎么得到,里面的内容又是什么?

回答:在ultralytics\cfg\models\v8目录下

可能又有人有疑问了, ultralytics\cfg\models\v8目录下明明只有yolov8.yaml,没有yolov8n.yaml呀。这一点后文再解答

任何获得?回答:可以从github上下载ultralytics源码得到,或者conda、pip安装ultralytics时,你的电脑本地也有ultralytcis源码,例如,我这里用conda建立了名为yolo8虚拟环境,在这个虚拟环境下pip install ultralytics安装了ultralytics源码,则源码在本地路径为:anaconda安装路径/envs/你自己建立的虚拟环境名/Lib/site-packages/ultralytics

上述训练方式二的yolov8n.pt预训练权重是哪里来的

回答:可以从ultralytics官方网站下载得到。地址:YOLOv8 - Ultralytics YOLO Docs

 model.train()函数可以指定的训练参数有很多,如下表所示: 

Key

Value

Description

model

None

path to model file, i.e. yolov8n.pt, yolov8n.yaml

data

None

path to data file, i.e. coco128.yaml

epochs

100

number of epochs to train for

time

None

number of hours to train for, overrides epochs if supplied

patience

50

epochs to wait for no observable improvement for early stopping of training

batch

16

number of images per batch (-1 for AutoBatch)

imgsz

640

size of input images as integer

save

True

save train checkpoints and predict results

save_period

-1

Save checkpoint every x epochs (disabled if < 1)

cache

False

True/ram, disk or False. Use cache for data loading

device

None

device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu

workers

8

number of worker threads for data loading (per RANK if DDP)

project

None

project name

name

None

experiment name

exist_ok

False

whether to overwrite existing experiment

pretrained

True

(bool or str) whether to use a pretrained model (bool) or a model to load weights from (str)

optimizer

'auto'

optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]

verbose

False

whether to print verbose output

seed

0

random seed for reproducibility

deterministic

True

whether to enable deterministic mode

single_cls

False

train multi-class data as single-class

rect

False

rectangular training with each batch collated for minimum padding

cos_lr

False

use cosine learning rate scheduler

close_mosaic

10

(int) disable mosaic augmentation for final epochs (0 to disable)

resume

False

resume training from last checkpoint

amp

True

Automatic Mixed Precision (AMP) training, choices=[True, False]

fraction

1.0

dataset fraction to train on (default is 1.0, all images in train set)

profile

False

profile ONNX and TensorRT speeds during training for loggers

freeze

None

(int or list, optional) freeze first n layers, or freeze list of layer indices during training

lr0

0.01

initial learning rate (i.e. SGD=1E-2, Adam=1E-3)

lrf

0.01

final learning rate (lr0 * lrf)

momentum

0.937

SGD momentum/Adam beta1

weight_decay

0.0005

optimizer weight decay 5e-4

warmup_epochs

3.0

warmup epochs (fractions ok)

warmup_momentum

0.8

warmup initial momentum

warmup_bias_lr

0.1

warmup initial bias lr

box

7.5

box loss gain

cls

0.5

cls loss gain (scale with pixels)

dfl

1.5

dfl loss gain

pose

12.0

pose loss gain (pose-only)

kobj

2.0

keypoint obj loss gain (pose-only)

label_smoothing

0.0

label smoothing (fraction)

nbs

64

nominal batch size

overlap_mask

True

masks should overlap during training (segment train only)

mask_ratio

4

mask downsample ratio (segment train only)

dropout

0.0

use dropout regularization (classify train only)

val

True

validate/test during training

plots

False

save plots and images during train/val

下面指出几个比较重要的训练参数

1. epochs 
epochs: 训练的轮数。这个参数确定了模型将会被训练多少次,每一轮都遍历整个训练数据集。训练的轮数越多,模型对数据的学习就越充分,但也增加了训练时间。

选取策略
默认是100轮数。但一般对于新数据集,我们还不知道这个数据集学习的难易程度,可以加大轮数,例如300,来找到更佳性能。

2.data

指定数据集的yaml文件,yaml文件中定义了训练集、验证集的路径;标签类别;标签类别个数等

3. patience
patience: 早停的等待轮数。在训练过程中,如果在一定的轮数内没有观察到模型性能的明显提升,就会停止训练。这个参数确定了等待的轮数,如果超过该轮数仍没有改进,则停止训练。

早停
早停能减少过拟合。过拟合(overfitting)指的是只能拟合训练数据, 但不能很好地拟合不包含在训练数据中的其他数据的状态。

4. batch
batch: 每个批次中的图像数量。在训练过程中,数据被分成多个批次进行处理,每个批次包含一定数量的图像。这个参数确定了每个批次中包含的图像数量。特殊的是,如果设置为**-1**,则会自动调整批次大小,至你的显卡能容纳的最多图像数量。

选取策略
一般认为batch越大越好。因为我们的batch越大我们选择的这个batch中的图片更有可能代表整个数据集的分布,从而帮助模型学习。但batch越大占用的显卡显存空间越多,所以还是有上限的。

5. imgsz
imgsz: 输入图像的尺寸。这个参数确定了输入图像的大小。可以指定一个整数值表示图像的边长,也可以指定宽度和高度的组合。例如640表示图像的宽度和高度均为640像素。
选取策略
如果数据集中存在大量小对象,增大输入图像的尺寸imgsz可以使得这些小对象从高分辨率中受益,更好的被检测出。

6. device 
device: 训练运行的设备。该参数指定了模型训练所使用的设备,例如使用 GPU 运行可以指定为 cuda device=0,或者使用多个 GPU 运行可以指定为 device=0,1,2,3,如果没有可用的 GPU,可以指定为 device=cpu 使用 CPU 进行训练。

7. workers
workers: 数据加载时的工作线程数。在数据加载过程中,可以使用多个线程并行地加载数据,以提高数据读取速度。这个参数确定了加载数据时使用的线程数,具体的最佳值取决于硬件和数据集的大小。
windows系统注意设置为0!!!windows系统下需设置为0,否则会报错!!!
RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase。

这是因为在linux系统中可以使用多个子进程加载数据,而在windows系统中不能。

 8. optimizer

optimizer: 选择要使用的优化器。优化器是深度学习中用于调整模型参数以最小化损失函数的算法。可以选择不同的优化器,如 ‘SGD’、‘Adam’、‘AdamW’、‘RMSProp’,根据任务需求选择适合的优化器。

更多训练参数,可参考ultralytics官网,受限于篇幅,这里不再一一介绍

像上面介绍的训练代码model.train(data='data.yaml', epochs=100, imgsz=640)

只指定了data,epochs,imgsz。如果你有指定其他训练参数的需要,可以参考上面的训练参数在train()函数中添加,比如训练指定优化器

model.train(data='data.yaml', epochs=100, imgsz=640,optimizer='SGD')

2.2 在win系统中进行训练

在上面的章节,简单介绍了一下使用python脚本训练模型的三种方式

from ultralytics import YOLO

# 这里有三种训练方式,三种任选其一

#第一种:根据yaml文件构建一个新模型进行训练,若对YOLO8网络进行了修改(比如添加了注意力机制)适合选用此种训练方式。但请注意这种训练方式是重头训练(一切参数都要自己训练),训练时间、资源消耗都是十分巨大的
model = YOLO('yolov8n.yaml')  # build a new model from YAML

#第二种:加载一个预训练模型,在此基础之前上对参数进行调整。这种方式是深度学习界最最主流的方式。由于大部分参数已经训练好,我们仅需根据数据集对模型的部分参数进行微调,因此训练时间最短,计算资源消耗最小。
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

#第三种:根据yaml文件构建一个新模型,然后将预训练模型的参数转移到新模型中,然后进行训练,对YOLO8网络进行改进的适合选用此种训练方式,而且训练时间不至于过长
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
#data参数指定数据集yaml文件(我这里data.yaml与train、val文件夹同目录)
#epochs指定训练多少轮
#imgsz指定图片大小
results = model.train(data='data.yaml', epochs=100, imgsz=640)

2.3.1 加载预训练模型训练

在开始训练之前,文件参考目录如下:

我这里直接加载yolov8n预训练模型进行训练,上图中训练代码train.py内容如下:

from ultralytics import YOLO
model=YOLO('yolov8n.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=0,batch=32,epochs=60)

需要注意的是,目录下最好提前下载好预训练模型(我这里是yolov8n.pt),如果没有提前下载好,运行train.py还是会ultralytics官网下载,由于外网的缘故,此时可能会出现网络问题。

yolo8n.pt预训练权重下载地址:

YOLOv8 - Ultralytics YOLO Docs

 注意,yolo8默认自动开启混合精度训练,并且是使用yolo8n.pt进行的,也就是说即使使用yolo8s,m等预训练模型训练自己的数据集,由于混合精度训练的需要,都会加载yolo8n,但请不要错误认为原本想要用yolov8s.pt训练数据集但看到控制台下载、加载了yolov8n.pt,就认为一直是yolo8n去训练,加载哪个模型就是用哪个模型去训练。像model=YOLO(“yolov8s.pt)是加载的yolo8s,就是用yolo8s去训练的。

如果你想要加载yolo8s yolo8m这些除yolo8n外的预训练模型训练自己的数据集,比如我加载yolo8s.pt 训练自己的数据集,需要在项目目录下提前下载好yolo8n(混合精度需要) yolo8s(训练自己的数据集需要)这两个模型,如果缺少yolo8n只有yolo8s,那么在开始训练之前会下载yolo8n,看到了下载yolo8n 此时好多人都错误的认为配置不生效,一直是用yolo8n训练之类的,实际上你加载哪个模型就是用哪个模型去训练你的数据集,只不过是你的项目目录下缺少用于混合精度的yolo8n,所以要去下载。下面给出使用yolo8s预训练模型训练自己的数据集的参考代码和目录结构

from ultralytics import YOLO
model=YOLO('yolov8s.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=0,batch=32,epochs=60)

 2.3.2 加载yaml文件训练

在开始训练之前,文件参考目录如下:

 我这里选择使用yolo8s 进行训练,train.py训练代码参考如下:

from ultralytics import YOLO
model=YOLO('yolov8s.yaml')
model.train(data='./data.yaml',imgsz=(640,640),workers=0,batch=32,epochs=60)

其中,上图中yolov8s.yaml是从ultralytics\cfg\models\v8目录下的yolov8.yaml复制过来的,并把yolov8.yaml重命令为 yolov8s.yaml,也就是文件名加一个后缀s。在训练之前,ultralytics框架会根据这个后缀确定训练到底采用哪种网络,比如yolov8x.yaml是指定yolo8x网络训练,而不指定后缀(例如直接加载yolov8.yaml)默认还是采用8n网络训练。

2.3.3 加载yaml文件和预训练权重进行训练

在开始训练之前,文件参考目录如下:

我这里还是选择使用yolo8s 进行训练,用yaml文件定义一个新网络模型并把yolov8s.pt的权重转移到新网络中,train.py训练代码参考如下:

from ultralytics import YOLO
model = YOLO('yolov8s.yaml').load('yolov8s.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=0,batch=32,epochs=60)
 2.3.4 开始训练

不论上述哪种方式,我们在anaconda中切换到提前已经配置好的ultralytics环境(我这里在anaconda中建立的ultralytics环境名称为yolo8),然后python命令运行train.py

之后,控制台窗口会有一系列的日志输出

 此时,训练成功。经过一段时间等待之后,在目录下的runs文件夹下会自动生成训练过程记录,包含模型权重、混淆矩阵、PR曲线、loss曲线等

上面是以yolo8为例,下面再以yolo10为例,给出训练代码。

from ultralytics import YOLO

# 这里有三种训练方式,三种任选其一

#第一种:根据yaml文件构建一个新模型进行训练,若对YOLO10网络进行了修改(比如添加了注意力机制)适合选用此种训练方式。但请注意这种训练方式是重头训练(一切参数都要自己训练),训练时间、资源消耗都是十分巨大的
model = YOLO('yolov10n.yaml')  # build a new model from YAML

#第二种:加载一个预训练模型,在此基础之前上对参数进行调整。这种方式是深度学习界最最主流的方式。由于大部分参数已经训练好,我们仅需根据数据集对模型的部分参数进行微调,因此训练时间最短,计算资源消耗最小。
model = YOLO('yolov10n.pt')  # load a pretrained model (recommended for training)

#第三种:根据yaml文件构建一个新模型,然后将预训练模型的参数转移到新模型中,然后进行训练,对YOLO8网络进行改进的适合选用此种训练方式,而且训练时间不至于过长
model = YOLO('yolov10n.yaml').load('yolov10n.pt')  # build from YAML and transfer weights

# Train the model
#data参数指定数据集yaml文件(我这里data.yaml与train、val文件夹同目录)
#epochs指定训练多少轮
#imgsz指定图片大小
results = model.train(data='data.yaml', epochs=100, imgsz=640)

说明:ultralytics最新版本的全面支持yolo5-yolo11,由于版本向下兼容,一般下载最新版本的ultralytics即可。ultralytics 8.0.x 8.1.x 8.2.x版本支持的yolo有所区别,比如ultralytics8.0.x一般支持yolo5 yolo8,具体ultralytics版本支持的yolo版本的差异,请去ultralytics官网查询

由于ultralytcis版本更新很快,这个框架在以惊人的速度吸收其他AI算法(如yolo-world、SAM等),后续版本的YOLO训练代码可能会有所差异,这里给出ultralytics网站地址:Models Supported by Ultralytics - Ultralytics YOLO Docs

官网的文档最具权威性与时效性,参考官方的教程,总不会出错。

同理 yolo9 yolo11等训练步骤也是类似的,利用了ultralytics框架训练不同版本的yolo仅仅是加载模型所有区别。具体yolo9 yolo11等训练代码,可以去ultralytics官网查看

2.3 在linux系统中进行训练

在linux系统中我们可以加大workers(数据加载时的工作线程数),从而加快训练速度,代码跟win系统基本保持一致,下面仅给出加载预训练模型的方式(其余加载yaml文件等方式不再给出示例),参考训练代码如下

from ultralytics import YOLO
model=YOLO('yolov8n.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=16,batch=32,epochs=60)

值得注意的是,无论是在win系统中还是linux系统中,都要根据自己电脑、服务器的算力去选择合适的workers和batch,设置过小训练速度慢,设置过大,会out of memory.


http://www.kler.cn/a/507258.html

相关文章:

  • GraphRAG如何使用ollama提供的llm model 和Embedding model服务构建本地知识库
  • 如何异地远程访问本地部署的Web-Check实现团队远程检测与维护本地站点
  • 【C++】构造函数与析构函数
  • DAMA CDGA 备考笔记(二)
  • Deep4SNet: deep learning for fake speech classification
  • .NET8.0多线程编码结合异步编码示例
  • 强化学习-蒙特卡洛方法
  • 数据库基础实验1(创建表,设置外键,检查,不为空,主键等约束)安装mysql详细步骤
  • 通过智能合约攻击漏洞:夺取合约所有权并提取余额
  • 立创开发板入门第六课 音频-扬声器和麦克风 I2S驱动
  • 3 前端(上): Web开发相关概念 、HTML语法、CSS语法
  • 【Golang 面试题】每日 3 题(三十)
  • MiniCPM-o 2.6:开源大型语言模型在多模态任务上超越GPT-4o和Claude 3.5
  • 【Vue】Vue组件--下
  • Linux和Docker常用终端命令:保姆级图文详解
  • Apache Hop从入门到精通 第三课 Apache Hop下载安装
  • 微服务的自我修养:从拆分到秩序的进化论
  • Redis监控系统:基于Redis Exporter的性能指标可视化
  • 二进制/源码编译安装mysql 8.0
  • Visual Studio Community 2022(VS2022)安装方法
  • 【Pico串流预览】使用“PICO Unity Live Preview Plugin”和PDC工具进行实时预览
  • JAVA实现五子棋小游戏(附源码)
  • SQL Prompt 插件
  • K8S中的Pod调度之定向调度
  • Python时间序列分析:使用TSFresh进行自动化特征提取
  • docker安装Nginx UI