当前位置: 首页 > article >正文

Python编程与机器学习:解锁气象、海洋、水文领域的新实践

专题一、Python软件的安装及入门

1.1 Python背景及其在气象中的应用

1.2 Anaconda解释和安装以及Jupyter配置

1.3 Python基础语法

专题二、气象常用科学计算库

2.1 Numpy库

2.2 Pandas库

2.4 Xarray库

专题三、气象海洋常用可视化库

3.1可视化库介绍Matplotlib、Cartopy等

3.2 基础绘图

(1)折线图绘制

(2)散点图绘制

(3)填色/等值线

(4)流场矢量图

专题四、爬虫和气象海洋数据

(1)Request库的介绍

(2)爬取中央气象台天气图

(3)FNL资料爬取

(4) ERA5下载

专题五、气象海洋常用插值方法

(1)规则网格数据插值到站点

(2)径向基函数RBF插值

(3)反距离权重IDW插值

(4)克里金Kriging插值

专题六、机器学习基础理论和实操

6.1 机器学习基础原理

(1)机器学习概论

(2)集成学习(Bagging和Boosting)

(3)常用模型原理(随机森林、Adaboost、GBDT、Xgboost、lightGBM)

6.2 机器学习库scikit-learn

(1)sklearn的简介

(2)sklearn完成分类任务

(3)sklearn完成回归任务

专题七、机器学习的应用实

机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。

7.1机器学习与深度学习在气象中的应用

AI在气象模式订正、短临预报、气候预测等场景的应用

7.2 GFS数值模式的风速预报订正

(1)随机森林挑选重要特征

(2)K近邻和决策树模型订正风速

(3)梯度提升决策树GBDT订正风速

(4)模型评估与对比

7.3 台风预报数据智能订正

(1)CMA台风预报数据集介绍以及预处理

(2)随机森林模型订正台风预报

(3)XGBoost模型订正台风预报

(4)台风“烟花”预报效果检验

7.4 机器学习预测风电场的风功率

(1)lightGBM模型预测风功率

(2)调参利器—网格搜索GridSearch于K折验证

专题八、深度学习基础理论和实操

8.1 深度学习基本理论

深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。

8.2 Pytorch库

(1)sklearn介绍、常用功能和机器学习方法

学习经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。

(2) pytorch介绍、搭建 模型

目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。

专题九、深度学习的应用实例

使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法LSTM,以及空间卷积算法UNET。

9.1深度学习预测浅水方程模式

(1)浅水模型介绍和数据获取

(2) 传统神经网络ANN学习浅水方程

(3)物理约束网络PINN学习浅水方程

9.2 LSTM方法预测ENSO

(4)ENSO简介及数据介绍

(5)LSTM方法原理介绍

(6)LSTM方法预测气象序列数据

9.3深度学习—卷积网络

(1)卷积神经网络介绍

(2)Unet进行雷达回波的预测

专题十、EOF统计分析

10.1 EOF基础和eofs库的介绍

10.2 EOF分析海表面温度数据

(1)SST数据计算距平,去趋势

(2)SST进行EOF分析,可视化

专题十一、模式后处理

11.1 WRF模式后处理

(1)wrf-python库介绍

(2)提取站点数据

(3)500hPa形式场绘制

(4)垂直剖面图——雷达反射率为例

11.2 ROMS模式后处理

(1)xarray为例操作ROMS输出数据

(2)垂直坐标转换,S坐标转深度坐标

(3)垂直剖面绘制

(4)水平填色图绘制


http://www.kler.cn/a/507432.html

相关文章:

  • Python基于Django的图像去雾算法研究和系统实现(附源码,文档说明)
  • Kafka常用命令
  • 生成订单号工具类
  • Jmeter如何进行多服务器远程测试
  • FreeType 介绍及 C# 示例
  • DHCP详解和部署
  • 从 0 开始实现一个 SpringBoot + Vue 项目
  • windows远程桌面连接限定ip
  • HTTP 性能优化策略
  • 【设计模式】 单例模式(单例模式哪几种实现,如何保证线程安全,反射破坏单例模式)
  • 关于ubuntu命令行连接github失败解决办法
  • 小哆啦的跳跃挑战:能否突破迷宫的极限?
  • 【北京迅为】iTOP-4412全能版使用手册-第七部分 Android入门教程
  • 【QT】: 初识 QWidget 控件 | QWidget 核心属性(API) | qrc 文件
  • el-dialog弹窗的@open方法中,第一次引用ref发现undefined问题,第二次后面又正常了
  • 微服务容器化部署好处多吗?
  • 记录一个v-if与自定义指令的BUG
  • 使用 ChatGPT 生成和改进你的论文
  • 【Javascript Day10】Math对象、Math随机数、时间对象
  • LabVIEW实车四轮轮速信号再现系统
  • tomcat项目运行后报500
  • Java 高级工程师面试高频题:JVM+Redis+ 并发 + 算法 + 框架
  • Quantum supremacy using a programmable superconducting processor 全文翻译,配公式和图
  • 将 AzureBlob 的日志通过 Azure Event Hubs 发给 Elasticsearch(3 纯python的经济方案)
  • CSS3 2D 转换介绍
  • element表格有横向滚动条时产生错位或者偏移(火狐浏览器)