FunASR 在Linux/Unix 平台编译
第一步拉取镜像并生成容器:
### 镜像启动
通过下述命令拉取并启动FunASR软件包的docker镜像:
```shell
sudo docker pull \
registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-online-cpu-0.1.12
mkdir -p ./funasr-runtime-resources/models
sudo docker run -p 10096:10095 -it --privileged=true \
-v $PWD/funasr-runtime-resources/models:/workspace/models \
registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-online-cpu-0.1.12
```
第二步进入容器,并进入目标文件夹进行编译:
### 安装依赖
```shell
# openblas
sudo apt-get install libopenblas-dev #ubuntu
# sudo yum -y install openblas-devel #centos
# openssl
apt-get install libssl-dev #ubuntu
# yum install openssl-devel #centos
```
### 编译 runtime
```shell
git clone https://github.com/alibaba-damo-academy/FunASR.git && cd FunASR/runtime/websocket
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/workspace/onnxruntime-linux-x64-1.14.0 -DFFMPEG_DIR=/workspace/ffmpeg-master-latest-linux64-gpl-shared
make -j 4
```
第三步:
### 服务端启动
docker启动之后,启动 funasr-wss-server-2pass服务程序:
```shell
cd FunASR/runtime
nohup bash run_server_2pass.sh \
--download-model-dir /workspace/models \
--vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \
--model-dir damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx \
--online-model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx \
--punc-dir damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727-onnx \
--lm-dir damo/speech_ngram_lm_zh-cn-ai-wesp-fst \
--itn-dir thuduj12/fst_itn_zh \
--hotword /workspace/models/hotwords.txt > log.txt 2>&1 &
# 如果您想关闭ssl,增加参数:--certfile 0
# 如果您想使用SenseVoiceSmall模型、时间戳、nn热词模型进行部署,请设置--model-dir为对应模型:
# iic/SenseVoiceSmall-onnx
# damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx(时间戳)
# damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404-onnx(nn热词)
# 如果您想在服务端加载热词,请在宿主机文件./funasr-runtime-resources/models/hotwords.txt配置热词(docker映射地址为/workspace/models/hotwords.txt):
# 每行一个热词,格式(热词 权重):阿里巴巴 20(注:热词理论上无限制,但为了兼顾性能和效果,建议热词长度不超过10,个数不超过1k,权重1~100)
# SenseVoiceSmall-onnx识别结果中“<|zh|><|NEUTRAL|><|Speech|> ”分别为对应的语种、情感、事件信息
```