当前位置: 首页 > article >正文

【深度学习基础】线性神经网络 | softmax回归的简洁实现

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、初始化模型参数
    • 二、重新审视Softmax的实现
    • 三、优化算法
    • 四、训练
    • 小结


  在【深度学习基础】线性神经网络 | 线性回归的简洁实现 中,我们发现通过深度学习框架的高级API能够使实现线性回归变得更加容易。同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。本节与在【深度学习基础】线性神经网络 | softmax回归的从零开始实现 中一样,继续使用Fashion-MNIST数据集,并保持批量大小为256。

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

一、初始化模型参数

  如我们在【深度学习基础】线性神经网络 | softmax回归 所述,softmax回归的输出层是一个全连接层。因此,为了实现我们的模型,我们只需在Sequential中添加一个带有10个输出的全连接层。同样,在这里Sequential并不是必要的,但它是实现深度模型的基础。我们仍然以均值0和标准差0.01随机初始化权重。

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

二、重新审视Softmax的实现

  在前面【深度学习基础】线性神经网络 | softmax回归的从零开始实现 的例子中,我们计算了模型的输出,然后将此输出送入交叉熵损失。从数学上讲,这是一件完全合理的事情。然而,从计算角度来看,指数可能会造成数值稳定性问题。

  回想一下,softmax函数 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \begin{aligned}\hat y_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)}\end{aligned} y^j=kexp(ok)exp(oj),其中 y ^ j \hat y_j y^j是预测的概率分布。 o j o_j oj是未规范化的预测 o \mathbf{o} o的第 j j j个元素。如果 o k o_k ok中的一些数值非常大,那么 exp ⁡ ( o k ) \exp(o_k) exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。这将使分母或分子变为inf(无穷大),最后得到的是0、infnan(不是数字)的 y ^ j \hat y_j y^j。在这些情况下,我们无法得到一个明确定义的交叉熵值。

  解决这个问题的一个技巧是:在继续softmax计算之前,先从所有 o k o_k ok中减去 max ⁡ ( o k ) \max(o_k) max(ok)。这里可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:
y ^ j = exp ⁡ ( o j − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) = exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) (1) \begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))} \tag{1} \end{aligned} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok))(1)

  在减法和规范化步骤之后,可能有些 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok)具有较大的负值。由于精度受限, exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))将有接近零的值,即下溢(underflow)。这些值可能会四舍五入为零,使 y ^ j \hat y_j y^j为零,并且使得 log ⁡ ( y ^ j ) \log(\hat y_j) log(y^j)的值为-inf。反向传播几步后,我们可能会发现自己面对一屏幕可怕的nan结果。

  尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。如下面的等式所示,我们避免计算 exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok)),而可以直接使用 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok),因为 log ⁡ ( exp ⁡ ( ⋅ ) ) \log(\exp(\cdot)) log(exp())被抵消了。
log ⁡ ( y ^ j ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = o j − max ⁡ ( o k ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) (2) \begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \tag{2} \end{aligned} log(y^j)=log(kexp(okmax(ok))exp(ojmax(ok)))=log(exp(ojmax(ok)))log(kexp(okmax(ok)))=ojmax(ok)log(kexp(okmax(ok)))(2)

  我们也希望保留传统的softmax函数,以备我们需要评估通过模型输出的概率。但是,我们没有将softmax概率传递到损失函数中,而是在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数,这是一种类似"LogSumExp技巧"的聪明方式。

loss = nn.CrossEntropyLoss(reduction='none')

三、优化算法

  在这里,我们使用学习率为0.1的小批量随机梯度下降作为优化算法。这与我们在线性回归例子中的相同,这说明了优化器的普适性。

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

四、训练

  接下来我们调用【深度学习基础】线性神经网络 | softmax回归的从零开始实现 中定义的训练函数来训练模型。

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

  和以前一样,这个算法使结果收敛到一个相当高的精度,而且这次的代码比之前更精简了。

小结

  • 使用深度学习框架的高级API,我们可以更简洁地实现softmax回归。
  • 从计算的角度来看,实现softmax回归比较复杂。在许多情况下,深度学习框架在这些著名的技巧之外采取了额外的预防措施,来确保数值的稳定性。这使我们避免了在实践中从零开始编写模型时可能遇到的陷阱。

http://www.kler.cn/a/507860.html

相关文章:

  • 【Uniapp-Vue3】uni-api交互反馈showToast的使用方法
  • leetcode 面试经典 150 题:汇总区间
  • 如何在Mac上使用Brew更新Cursor应用程序
  • openharmony标准系统方案之瑞芯微RK3568移植案例
  • 基于 requests 依赖包的 Python 爬虫实战
  • js-判断一个object(对象)是否为空
  • 算法随笔_6: 下一个排列
  • linux 安装PrometheusAlert配置钉钉告警
  • 博客搭建 — GitHub Pages 部署
  • Spark任务提交流程
  • 学习记录1
  • 免费送源码:Java+SpringBoot+MySQL SpringBoot网上宠物领养管理系统 计算机毕业设计原创定制
  • el-table中使用el-image图片预览被其他表格遮挡,使用z-index层级设置无效
  • 从 Web3 到元宇宙:探索数字身份的奇幻演变
  • Sqlmap入门
  • OpenCV-ED绘制的使用(附源码)
  • 1.17学习记录
  • 使用Docker部署postgresql
  • Navicat For Mysql 1112 导出密码破解 python
  • PHP生产管理系统
  • 算法-最大连续1的个数
  • IntelliJ IDEA 路径问题总结:如何配置并显示当前工作目录
  • Python学习之旅:入门阶段(七)数据结构
  • 【C++】反向迭代器
  • Kotlin语言的正则表达式
  • wordpress zibll 2025款新页脚-6ke论坛