基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览
(完整程序运行后无水印)
2.算法运行软件版本
matlab2022a
3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
.......................................................................
figure;
plot(gb1,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('优化迭代次数');
ylabel('适应度值');
X = g1;
%设置网络参数
%卷积核
Nfilter = floor(X(1));%8;
%卷积核大小
Sfilter = floor(X(2));%5;
%丢失因子
drops = X(3);%0.025;
%残差块
Nblocks = floor(X(4));%4;
%特征个数
Nfeats = Dims;
%设置网络参数
lgraph=func_layers2(Dims,Dimso,X);
%参数设置
options = trainingOptions("adam",...
'InitialLearnRate',X(5),...
'MaxEpochs',500,...
'miniBatchSize',2,...
'Plots','training-progress',...
'Verbose', false);
%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%仿真预测
tmps = predict(net, Ptest_reshape );
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR = mean(abs(T_test-T_pred));
ERR
figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on
figure
plotregression(T_test,T_pred,['回归']);
save R2.mat Rerr Rlos T_test T_pred ERR gb1
200
4.算法理论概述
时间序列预测是根据历史时间序列数据来预测未来值的过程。在众多的预测方法中,TCN(时间卷积神经网络)由于其对序列数据的有效处理能力而被广泛应用,PSO(粒子群优化)则可以用于优化 TCN 的参数,以提高预测性能。TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。
经过多层卷积和处理后,TCN 的输出层将生成预测结果。对于时间序列预测任务,输出层的维度通常与预测的时间步长相对应。
因果卷积
残差连接
适应度函数
适应度函数用于评估每个染色体(即一组 TCN 超参数设置)的优劣。在时间序列预测任务中,通常以预测误差作为适应度函数的基础。例如,可以使用均方误差(MSE)作为适应度函数的一部分:
基于 PSO 粒子群优化 TCN 时间序列预测的原理
首先,构建 TCN 网络结构用于时间序列预测,其参数(如卷积核权重、偏置等)初始化为随机值。然后,利用 PSO 算法来优化这些参数。
PSO 算法通过一群粒子在参数空间中搜索最优的 TCN 参数组合。每个粒子代表一组可能的 TCN 参数,通过计算适应度函数(基于预测误差)来评估粒子的好坏。
在每次迭代中,粒子根据自身的经验(个体最优位置)和群体的经验(全局最优位置)来更新自己的速度和位置,从而逐步靠近最优的 TCN 参数组合。
随着 PSO 的迭代进行,TCN 的参数不断优化,使得其在时间序列预测任务中的性能(如降低预测误差)不断提高。最终,经过多次迭代后,得到优化后的 TCN 模型用于时间序列预测。
5.算法完整程序工程
OOOOO
OOO
O