当前位置: 首页 > article >正文

《Keras 3 使用 Reptile 进行 Few-Shot 学习》

Keras 3 使用 Reptile 进行 Few-Shot 学习

作者:ADMoreau
创建日期:2020/05/21
最后修改时间:2023/07/20
描述:使用 Reptile 在 Omniglot 数据集上进行小样本分类。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


介绍

Reptile 算法由 OpenAI 开发,用于 执行与模型无关的元学习。具体来说,该算法旨在 通过最少的培训快速学习执行新任务(小样本学习)。 该算法的工作原理是使用 在一小批前所未见的数据上训练的权重与 模型权重。

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import keras
from keras import layers

import matplotlib.pyplot as plt
import numpy as np
import random
import tensorflow as tf
import tensorflow_datasets as tfds

定义超参数

learning_rate = 0.003
meta_step_size = 0.25

inner_batch_size = 25
eval_batch_size = 25

meta_iters = 2000
eval_iters = 5
inner_iters = 4

eval_interval = 1
train_shots = 20
shots = 5
classes = 5

准备数据

Omniglot 数据集是一个包含 1,623 个的数据集 取自 50 个不同字母表的字符,每个字符有 20 个示例。 每个角色的 20 个样本是通过亚马逊的 Mechanical Turk 在线绘制的。对于 Few-shot 学习任务中,样本(或“样本”)是从随机选择的 类。这些数值用于创建一组新的临时标签 测试模型学习新任务的能力,给出几个例子。换句话说,如果你 正在训练 5 个类,则您的新类标签将为 0、1、2、3 或 4。 Omniglot 是完成此任务的绝佳数据集,因为有许多不同的类可供绘制 from,每个类都有合理数量的样本。knn

class Dataset:
    # This class will facilitate the creation of a few-shot dataset
    # from the Omniglot dataset that can be sampled from quickly while also
    # allowing to create new labels at the same time.
    def __init__(self, training):
        # Download the tfrecord files containing the omniglot data and convert to a
        # dataset.
        split = "train" if training else "test"
        ds = tfds.load("omniglot", split=split, as_supervised=True, shuffle_files=False)
        # Iterate over the dataset to get each individual image and its class,
        # and put that data into a dictionary.
        self.data = {}

        def extraction(image, label):
            # This function will shrink the Omniglot images to the desired size,
            # scale pixel values and convert the RGB image to grayscale
            image = tf.image.convert_image_dtype(image, tf.float32)
            image = tf.image.rgb_to_grayscale(image)
            image = tf.image.resize(image, [28, 28])
            return image, label

        for image, label in ds.map(extraction):
            image = image.numpy()
            label = str(label.numpy())
            if label not in self.data:
                self.data[label] = []
            self.data[label].append(image)
        self.labels = list(self.data.keys())

    def get_mini_dataset(
        self, batch_size, repetitions, shots, num_classes, split=False
    ):
        temp_labels = np.zeros(shape=(num_classes * shots))
        temp_images = np.zeros(shape=(num_classes * shots, 28, 28, 1))
        if split:
            test_labels = np.zeros(shape=(num_classes))
            test_images = np.zeros(shape=(num_classes, 28, 28, 1))

        # Get a random subset of labels from the entire label set.
        label_subset = random.choices(self.labels, k=num_classes)
        for class_idx, class_obj in enumerate(label_subset):
            # Use enumerated index value as a temporary label for mini-batch in
            # few shot learning.
            temp_labels[class_idx * shots : (class_idx + 1) * shots] = class_idx
            # If creating a split dataset for testing, select an extra sample from each
            # label to create the test dataset.
            if split:
                test_labels[class_idx] = class_idx
                images_to_split = random.choices(
                    self.data[label_subset[class_idx]], k=shots + 1
                )
                test_images[class_idx] = images_to_split[-1]
                temp_images[
                    class_idx * shots : (class_idx + 1) * shots
                ] = images_to_split[:-1]
            else:
                # For each index in the randomly selected label_subset, sample the
                # necessary number of images.
                temp_images[
                    class_idx * shots : (class_idx + 1) * shots
                ] = random.choices(self.data[label_subset[class_idx]], k=shots)

        dataset = tf.data.Dataset.from_tensor_slices(
            (temp_images.astype(np.float32), temp_labels.astype(np.int32))
        )
        dataset = dataset.shuffle(100).batch(batch_size).repeat(repetitions)
        if split:
            return dataset, test_images, test_labels
        return dataset


import urllib3

urllib3.disable_warnings()  # Disable SSL warnings that may happen during download.
train_dataset = Dataset(training=True)
test_dataset = Dataset(training=False)
 Downloading and preparing dataset 17.95 MiB (download: 17.95 MiB, generated: Unknown size, total: 17.95 MiB) to /home/fchollet/tensorflow_datasets/omniglot/3.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/4 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/19280 [00:00<?, ? examples/s] Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-train.tfrecord*...: 0%… Generating test examples...: 0%| | 0/13180 [00:00<?, ? examples/s] Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-test.tfrecord*...: 0%|… Generating small1 examples...: 0%| | 0/2720 [00:00<?, ? examples/s] Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-small1.tfrecord*...: 0… Generating small2 examples...: 0%| | 0/3120 [00:00<?, ? examples/s] Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-small2.tfrecord*...: 0… Dataset omniglot downloaded and prepared to /home/fchollet/tensorflow_datasets/omniglot/3.0.0. Subsequent calls will reuse this data. 

可视化数据集中的一些示例

_, axarr = plt.subplots(nrows=5, ncols=5, figsize=(20, 20))

sample_keys = list(train_dataset.data.keys())

for a in range(5):
    for b in range(5):
        temp_image = train_dataset.data[sample_keys[a]][b]
        temp_image = np.stack((temp_image[:, :, 0],) * 3, axis=2)
        temp_image *= 255
        temp_image = np.clip(temp_image, 0, 255).astype("uint8")
        if b == 2:
            axarr[a, b].set_title("Class : " + sample_keys[a])
        axarr[a, b].imshow(temp_image, cmap="gray")
        axarr[a, b].xaxis.set_visible(False)
        axarr[a, b].yaxis.set_visible(False)
plt.show()

PNG 格式


构建模型

def conv_bn(x):
    x = layers.Conv2D(filters=64, kernel_size=3, strides=2, padding="same")(x)
    x = layers.BatchNormalization()(x)
    return layers.ReLU()(x)


inputs = layers.Input(shape=(28, 28, 1))
x = conv_bn(inputs)
x = conv_bn(x)
x = conv_bn(x)
x = conv_bn(x)
x = layers.Flatten()(x)
outputs = layers.Dense(classes, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile()
optimizer = keras.optimizers.SGD(learning_rate=learning_rate)

训练模型

training = []
testing = []
for meta_iter in range(meta_iters):
    frac_done = meta_iter / meta_iters
    cur_meta_step_size = (1 - frac_done) * meta_step_size
    # Temporarily save the weights from the model.
    old_vars = model.get_weights()
    # Get a sample from the full dataset.
    mini_dataset = train_dataset.get_mini_dataset(
        inner_batch_size, inner_iters, train_shots, classes
    )
    for images, labels in mini_dataset:
        with tf.GradientTape() as tape:
            preds = model(images)
            loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
        grads = tape.gradient(loss, model.trainable_weights)
        optimizer.apply_gradients(zip(grads, model.trainable_weights))
    new_vars = model.get_weights()
    # Perform SGD for the meta step.
    for var in range(len(new_vars)):
        new_vars[var] = old_vars[var] + (
            (new_vars[var] - old_vars[var]) * cur_meta_step_size
        )
    # After the meta-learning step, reload the newly-trained weights into the model.
    model.set_weights(new_vars)
    # Evaluation loop
    if meta_iter % eval_interval == 0:
        accuracies = []
        for dataset in (train_dataset, test_dataset):
            # Sample a mini dataset from the full dataset.
            train_set, test_images, test_labels = dataset.get_mini_dataset(
                eval_batch_size, eval_iters, shots, classes, split=True
            )
            old_vars = model.get_weights()
            # Train on the samples and get the resulting accuracies.
            for images, labels in train_set:
                with tf.GradientTape() as tape:
                    preds = model(images)
                    loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
                grads = tape.gradient(loss, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))
            test_preds = model.predict(test_images)
            test_preds = tf.argmax(test_preds).numpy()
            num_correct = (test_preds == test_labels).sum()
            # Reset the weights after getting the evaluation accuracies.
            model.set_weights(old_vars)
            accuracies.append(num_correct / classes)
        training.append(accuracies[0])
        testing.append(accuracies[1])
        if meta_iter % 100 == 0:
            print(
                "batch %d: train=%f test=%f" % (meta_iter, accuracies[0], accuracies[1])
            )
batch 0: train=0.600000 test=0.200000 batch 100: train=0.800000 test=0.200000 batch 200: train=1.000000 test=1.000000 batch 300: train=1.000000 test=0.800000 batch 400: train=1.000000 test=0.600000 batch 500: train=1.000000 test=1.000000 batch 600: train=1.000000 test=0.600000 batch 700: train=1.000000 test=1.000000 batch 800: train=1.000000 test=0.800000 batch 900: train=0.800000 test=0.600000 batch 1000: train=1.000000 test=0.600000 batch 1100: train=1.000000 test=1.000000 batch 1200: train=1.000000 test=1.000000 batch 1300: train=0.600000 test=1.000000 batch 1400: train=1.000000 test=0.600000 batch 1500: train=1.000000 test=1.000000 batch 1600: train=0.800000 test=1.000000 batch 1700: train=0.800000 test=1.000000 batch 1800: train=0.800000 test=1.000000 batch 1900: train=1.000000 test=1.000000 

可视化结果

# First, some preprocessing to smooth the training and testing arrays for display.
window_length = 100
train_s = np.r_[
    training[window_length - 1 : 0 : -1],
    training,
    training[-1:-window_length:-1],
]
test_s = np.r_[
    testing[window_length - 1 : 0 : -1], testing, testing[-1:-window_length:-1]
]
w = np.hamming(window_length)
train_y = np.convolve(w / w.sum(), train_s, mode="valid")
test_y = np.convolve(w / w.sum(), test_s, mode="valid")

# Display the training accuracies.
x = np.arange(0, len(test_y), 1)
plt.plot(x, test_y, x, train_y)
plt.legend(["test", "train"])
plt.grid()

train_set, test_images, test_labels = dataset.get_mini_dataset(
    eval_batch_size, eval_iters, shots, classes, split=True
)
for images, labels in train_set:
    with tf.GradientTape() as tape:
        preds = model(images)
        loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
    grads = tape.gradient(loss, model.trainable_weights)
    optimizer.apply_gradients(zip(grads, model.trainable_weights))
test_preds = model.predict(test_images)
test_preds = tf.argmax(test_preds).numpy()

_, axarr = plt.subplots(nrows=1, ncols=5, figsize=(20, 20))

sample_keys = list(train_dataset.data.keys())

for i, ax in zip(range(5), axarr):
    temp_image = np.stack((test_images[i, :, :, 0],) * 3, axis=2)
    temp_image *= 255
    temp_image = np.clip(temp_image, 0, 255).astype("uint8")
    ax.set_title(
        "Label : {}, Prediction : {}".format(int(test_labels[i]), test_preds[i])
    )
    ax.imshow(temp_image, cmap="gray")
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.show()
 

PNG 格式

PNG 格式


http://www.kler.cn/a/513167.html

相关文章:

  • 如何使用CRM数据分析优化销售和客户关系?
  • 包文件分析器 Webpack Bundle Analyzer
  • 成就与远见:2024年技术与思维的升华
  • opencv在图片上添加中文汉字(c++以及python)
  • 美区TikTok解封后如何回归使用?
  • 前端常见标签
  • SSL证书的颁发格式和制作过
  • 第四天 安装DevEco Studio,配置HarmonyOS开发环境
  • 【集合】单列集合和双列集合
  • OpenCV简介、OpenCV安装
  • 25届自动化考研复试微机原理基础版题库
  • Y3编辑器2.0功能指引
  • js手写-实现Promise的实例方法
  • 深度学习中梯度的补充理解
  • 《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
  • Jira中bug的流转流程
  • mybatis plus 中 使用 updateById或updateBatchById 更新字段为null 不更新问题
  • 虚幻基础-1:cpu挑选(14600kf)
  • 【FPGA】MIPS 12条整数指令【1】
  • html,css,js的粒子效果
  • 【Elasticsearch】Elasticsearch文档操作
  • IoTDB 1.2 升级 1.3 后 Pipe 插件失效
  • vif-方差膨胀因子计算
  • macOS如何进入 Application Support 目录(cd: string not in pwd: Application)
  • QD Laser携“Lantana”激光器参展SPIE光子学西部展2025,聚焦紧凑型设计
  • 日历热力图,月度数据可视化图表(日活跃图、格子图)vue组件