亚博microros小车-原生ubuntu支持系列:5-姿态检测
MediaPipe 介绍参见:亚博microros小车-原生ubuntu支持系列:4-手部检测-CSDN博客
本篇继续迁移姿态检测。
一 背景知识
以下来自亚博官网
MediaPipe Pose是⼀个⽤于⾼保真⾝体姿势跟踪的ML解决⽅案,利⽤BlazePose研究,从RGB视频帧推断出33个3D坐标和全⾝背景分割遮罩,该研究也为ML Kit姿势检测API提供了动⼒。
MediaPipe姿势中的地标模型预测了33个姿势坐标的位置(参⻅下图)。
跟手部检测类似
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False,
model_complexity=1,
smooth_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)#打开默认摄像头
while True:
ret,frame = cap.read()#读取一帧图像
#图像格式转换
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 因为摄像头是镜像的,所以将摄像头水平翻转
# 不是镜像的可以不翻转
frame= cv2.flip(frame,1)
#输出结果
results = pose.process(frame)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
if results.pose_landmarks:
print(f'pose_landmarks:{results.pose_landmarks}' )
# 关键点可视化
mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
else:
print('there are no person!')
continue
cv2.imshow('MediaPipe pose', frame)
if cv2.waitKey(1) & 0xFF == 27:
break
cap.release()
运行效果:
二 位姿检测
src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件02_PoseDetector.py
#!/usr/bin/env python3
# encoding: utf-8
#import ros lib
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Point
import mediapipe as mp
#import define msg
from yahboomcar_msgs.msg import PointArray
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImage
#import commom lib
import cv2 as cv
import numpy as np
import time
from rclpy.time import Time
import datetime
print("import done")
class PoseDetector(Node):
def __init__(self, name,mode=False, smooth=True, detectionCon=0.5, trackCon=0.5):
super().__init__(name)
self.mpPose = mp.solutions.pose
self.mpDraw = mp.solutions.drawing_utils
#初始化位姿
self.pose = self.mpPose.Pose(
static_image_mode=mode,
smooth_landmarks=smooth,
min_detection_confidence=detectionCon,
min_tracking_confidence=trackCon )
self.pub_point = self.create_publisher(PointArray,'/mediapipe/points',1000)
#输出关键点样式
self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=6)
self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2)
#位姿检测
def pubPosePoint(self, frame, draw=True):
pointArray = PointArray()
img = np.copy(frame)
#图片格式转换
img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
self.results = self.pose.process(img_RGB)
if self.results.pose_landmarks:#关键点输出
if draw: self.mpDraw.draw_landmarks(frame, self.results.pose_landmarks, self.mpPose.POSE_CONNECTIONS, self.lmDrawSpec, self.drawSpec)
self.mpDraw.draw_landmarks(img, self.results.pose_landmarks, self.mpPose.POSE_CONNECTIONS, self.lmDrawSpec, self.drawSpec)
for id, lm in enumerate(self.results.pose_landmarks.landmark):
point = Point()
point.x, point.y, point.z = lm.x, lm.y, lm.z
pointArray.points.append(point)
self.pub_point.publish(pointArray)
return frame, img
def frame_combine(slef,frame, src):
if len(frame.shape) == 3:
frameH, frameW = frame.shape[:2]
srcH, srcW = src.shape[:2]
dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
dst[:, :frameW] = frame[:, :]
dst[:, frameW:] = src[:, :]
else:
src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
frameH, frameW = frame.shape[:2]
imgH, imgW = src.shape[:2]
dst = np.zeros((frameH, frameW + imgW), np.uint8)
dst[:, :frameW] = frame[:, :]
dst[:, frameW:] = src[:, :]
return dst
class MY_Picture(Node):
def __init__(self, name):
super().__init__(name)
self.bridge = CvBridge()
self.sub_img = self.create_subscription(
CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像
self.last_stamp = None
self.new_seconds = 0
self.fps_seconds = 1
self.pose_detector = PoseDetector('pose_detector')
#回调函数
def handleTopic(self, msg):
self.last_stamp = msg.header.stamp
if self.last_stamp:
total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanoseconds
delta = datetime.timedelta(seconds=total_secs * 1e-9)
seconds = delta.total_seconds()*100
if self.new_seconds != 0:
self.fps_seconds = seconds - self.new_seconds
self.new_seconds = seconds#保留这次的值
start = time.time()
frame = self.bridge.compressed_imgmsg_to_cv2(msg)
frame = cv.resize(frame, (640, 480))
cv.waitKey(10)
frame, img = self.pose_detector.pubPosePoint(frame,draw=False)
end = time.time()
fps = 1 / ((end - start)+self.fps_seconds)
text = "FPS : " + str(int(fps))
cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
dist = self.pose_detector.frame_combine(frame, img)
cv.imshow('dist', dist)
# print(frame)
cv.waitKey(10)
def main():
print("start it")
rclpy.init()
esp_img = MY_Picture("My_Picture")
try:
rclpy.spin(esp_img)
except KeyboardInterrupt:
pass
finally:
esp_img.destroy_node()
rclpy.shutdown()
主要逻辑跟之前的手部探测类似,MY_Picture(Node):从摄像头获取图像,调用 pubPosePoint(frame,draw=False)探测位姿。
测试:
启动图像代理
docker run -it --rm -v /dev:/dev -v /dev/shm:/dev/shm --privileged --net=host microros/micro-ros-agent:humble udp4 --port 9999 -v4
重新构建后运行:
bohu@bohu-TM1701:~/yahboomcar/yahboomcar_ws$ ros2 run yahboom_esp32_mediapipe PoseDetector
import done
start it
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1737459931.889105 73213 gl_context_egl.cc:85] Successfully initialized EGL. Major : 1 Minor: 5
I0000 00:00:1737459931.892356 73266 gl_context.cc:369] GL version: 3.2 (OpenGL ES 3.2 Mesa 23.2.1-1ubuntu3.1~22.04.3), renderer: Mesa Intel(R) UHD Graphics 620 (KBL GT2)
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
W0000 00:00:1737459931.986178 73249 inference_feedback_manager.cc:114] Feedback manager requires a model with a single signature inference. Disabling support for feedback tensors.
W0000 00:00:1737459932.041183 73256 inference_feedback_manager.cc:114] Feedback manager requires a model with a single signature inference. Disabling support for feedback tensors.
W0000 00:00:1737459932.068208 73256 landmark_projection_calculator.cc:186] Using NORM_RECT without IMAGE_DIMENSIONS is only supported for the square ROI. Provide IMAGE_DIMENSIONS or use PROJECTION_MATRIX.
Warning: Ignoring XDG_SESSION_TYPE=wayland on Gnome. Use QT_QPA_PLATFORM=wayland to run on Wayland anyway.
Corrupt JPEG data: premature end of data segment
Corrupt JPEG data: premature end of data segment
Corrupt JPEG data: premature end of data segment
Corrupt JPEG data: premature end of data segment
受限于小车摄像头,太近了拍不了。用手机放个体操视频来测试下