当前位置: 首页 > article >正文

積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

K(x,y) 是定义在[a,b]\times[a,b]上的连续对称核函数,

非齐次第二类弗雷德霍姆积分算子方程的形式为:

\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

其中\varphi(x)是未知函数,f(x)是给定的连续函数,\lambda是参数。

2)def其特徵值是否一致收斂
定义:

对于由连续对称核K(x,y)生成的积分算子T

其特征值序列\{\lambda_n\}若满足对于任意的\epsilon>0

存在N\in\mathbb{N},使得当n,m > N时,对于所有x\in[a,b]

都有|\lambda_n - \lambda_m|<\epsilon,则称特征值序列\{\lambda_n\}一致收敛。

证明:

由希尔伯特 - 施密特定理,对于由连续对称核K(x,y)定义的积分算子T

存在由特征向量 \{\varphi_n\}构成的L^2[a,b]的标准正交基,

对应的特征值\{\lambda_n\}满足 \lim_{n\rightarrow\infty}\lambda_n = 0

T是紧自伴算子,其特征值\lambda_n满足|\lambda_1|\geq|\lambda_2|\geq\cdots

对于任意\epsilon > 0,因为\lim_{n\rightarrow\infty}\lambda_n = 0

存在N,使得当n > N时,|\lambda_n|<\frac{\epsilon}{2}

那么对于n,m > N,有 |\lambda_n-\lambda_m|\leq|\lambda_n| + |\lambda_m|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon

所以特征值序列\{\lambda_n\}一致收敛到 0。

其柯西判斷

柯西准则:对于序列\{\lambda_n\}

它收敛的充要条件是对于任意的\epsilon>0,存在N\in\mathbb{N}

使得当n,m > N时,|\lambda_n - \lambda_m|<\epsilon

在特征值序列的情况下,前面已证明其满足柯西准则,所以特征值序列收敛。

3)def具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程,要麼對所有連續函數f有解,要麼齊次方程有平凡解
证明思路:

设非齐次方程\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

对应的齐次方程为\varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

由希尔伯特 - 施密特定理,积分算子T(T\varphi)(x)=\int_{a}^{b}K(x,y)\varphi(y)dy)是紧自伴算子,

存在标准正交基\{\varphi_n\}和特征值\{\lambda_n\}

假设齐次方程仅有平凡解,即对于\lambda不是特征值时,

齐次方程\varphi(x)-\lambda\int_{a}^{b}K(x,y)\varphi(y)dy = 0只有解\varphi(x)=0

对于非齐次方程,将\varphi(x)f(x)按特征向量展开:

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

其中a_n=\langle\varphi,\varphi_n\rangleb_n=\langle f,\varphi_n\rangle

代入非齐次方程可得:\sum_{n = 1}^{\infty}a_n\varphi_n(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)+\lambda\sum_{n = 1}^{\infty}a_n\lambda_n\varphi_n(x)

比较系数得a_n(1 - \lambda\lambda_n)=b_n

因为\lambda 不是特征值,1-\lambda\lambda_n\neq0,所以a_n=\frac{b_n}{1 - \lambda\lambda_n},从而非齐次方程有解。

反之,若齐次方程有非平凡解,

即存在非零解\varphi(x)使得 \varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

那么对于某些f(x),非齐次方程可能无解。

例如,若f(x)与齐次方程非平凡解的正交补空间不匹配时,非齐次方程无解。

4)计算例题

考虑积分方程\varphi(x)=x+\lambda\int_{0}^{1}(xy)\varphi(y)dy,这里 K(x,y)=xy是连续对称核,f(x)=x

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

先求积分算子 T(T\varphi)(x)=\int_{0}^{1}(xy)\varphi(y)dy)的特征值和特征向量。

\varphi(x)是特征函数,\lambda是特征值,则 \varphi(x)=\lambda\int_{0}^{1}(xy)\varphi(y)dy

\varphi(x)=Ax^m,代入得Ax^m=\lambda A\int_{0}^{1}y^{m + 1}dyx=\lambda A\frac{1}{m + 2}x

所以m = 1\varphi(x)=AxA=\lambda A\frac{1}{3},解得特征值\lambda_1 = 3,特征向量 \varphi_1(x)=x

\varphi(x)=a_1xf(x)=x代入原非齐次方程:

a_1x=x+\lambda a_1\int_{0}^{1}(xy)ydy

计算 \int_{0}^{1}(xy)ydy=\frac{1}{3}x,则 a_1x=x+\frac{1}{3}\lambda a_1x

整理得a_1(1-\frac{1}{3}\lambda)=1

\lambda\neq3 时,a_1=\frac{1}{1-\frac{1}{3}\lambda}

所以\varphi(x)=\frac{1}{1 - \frac{1}{3}\lambda}x是方程的解。

\lambda = 3 时,齐次方程\varphi(x)=3\int_{0}^{1}(xy)\varphi(y)dy有非平凡解\varphi(x)=x

此时原非齐次方程对于 f(x)=x无解(因为代入后会出现矛盾)。


http://www.kler.cn/a/519853.html

相关文章:

  • 【矩阵二分】力扣378. 有序矩阵中第 K 小的元素
  • 10 Hyperledger Fabric 介绍
  • 个性化的语言模型构建思路
  • 洛谷 P5709:Apples Prologue / 苹果和虫子
  • 2025年前端技术革新趋势
  • Leetcode求职题目(21)
  • 适合 C# 开发者的 Semantic Kernel 入门:用 AI 赋能你的 .NET 应用
  • 【由浅入深认识Maven】第1部分 maven简介与核心概念
  • 回溯算法学习记录及习题集合
  • JavaScript常见面试问题解答
  • 代码随想录训练营第五十六天| 108.冗余连接 109.冗余连接II
  • 2024年蓝桥杯真题C/C++/java组部分真题解析(一)
  • 手撕Diffusion系列 - 第九期 - 改进为Stable Diffusion(原理介绍)
  • mysql create table的用法
  • INCOSE需求编写指南-第 2 节:需求和要求陈述的特征
  • PD协议(Power Delivery)高效安全解决充电宝给笔记本供电
  • Android BitmapShader简洁实现马赛克/高斯模糊(毛玻璃),Kotlin(三)
  • javascript格式化对象数组:ES6的模板字符串、map
  • 深度学习|表示学习|卷积神经网络|Pooling(池化是在做什么)|13
  • 通过循环添加组件