代码随想录训练营第五十八天| 拓扑排序精讲 dijkstra(朴素版)精讲
拓扑排序精讲
其实只要能在把 有向无环图 进行线性排序 的算法 都可以叫做 拓扑排序。
实现拓扑排序的算法有两种:卡恩算法(BFS)和DFS
卡恩1962年提出这种解决拓扑排序的思路
引自代码随想录:
一般来说我们只需要掌握 BFS (广度优先搜索)就可以了,清晰易懂,如果还想多了解一些,可以再去学一下 DFS 的思路,但 DFS 不是本篇重点。
接下来我们来讲解BFS的实现思路。
以题目中示例为例如图:
做拓扑排序的话,如果肉眼去找开头的节点,一定能找到 节点0 吧,都知道要从节点0 开始。
但为什么我们能找到 节点0呢,因为我们肉眼看着 这个图就是从 节点0出发的。
作为出发节点,它有什么特征?
你看节点0 的入度 为0 出度为2, 也就是 没有边指向它,而它有两条边是指出去的。
节点的入度表示 有多少条边指向它,节点的出度表示有多少条边 从该节点出发。
所以当我们做拓扑排序的时候,应该优先找 入度为 0 的节点,只有入度为0,它才是出发节点。 理解以上内容很重要!
接下来我给出 拓扑排序的过程,其实就两步:
- 找到入度为0 的节点,加入结果集
- 将该节点从图中移除
循环以上两步,直到 所有节点都在图中被移除了。
结果集的顺序,就是我们想要的拓扑排序顺序 (结果集里顺序可能不唯一)
判断有环
如果有 有向环怎么办呢?例如这个图:
这个图,我们只能将入度为0 的节点0 接入结果集。
之后,节点1、2、3、4 形成了环,找不到入度为0 的节点了,所以此时结果集里只有一个元素。
那么如果我们发现结果集元素个数 不等于 图中节点个数,我们就可以认定图中一定有 有向环!
这也是拓扑排序判断有向环的方法。
模版如下
import java.util.*;
public class Carlcodetpsort {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
List<List<Integer>> list = new ArrayList<>();//记录文件依赖关系
int[] inDegree = new int[n];//记录每个文件的入度
for(int i = 0; i < n; i++){
list.add(new ArrayList<>());
}
for (int i = 0; i < m; i++) {
int s = scanner.nextInt();
int t = scanner.nextInt();
list.get(s).add(t);//记录s指向哪些文件
inDegree[t]++;
}
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < n; i++) {
if(inDegree[i] == 0){
//入度为0的文件 可以作为开头 先加入队列
queue.add(i);
}
}
List<Integer> ans = new ArrayList<>();
//拓扑排序
while(!queue.isEmpty()){
int cur = queue.poll();
ans.add(cur);
for(int file : list.get(cur)){
if(inDegree[file] == 0){
queue.add(file);
}
}
}
if(ans.size() == n){
for (int i = 0; i < ans.size(); i++) {
System.out.println(ans.get(i));
if(i < ans.size() - 1){
System.out.println(" ");
}else{
System.out.println(-1);
}
}
}
}
}
dijkstra(朴素版)精讲
以下内容引自代码随想录:
dijkstra算法:在有权图(权值非负数)中求从起点到其他节点的最短路径算法。
需要注意两点:
- dijkstra 算法可以同时求 起点到所有节点的最短路径
- 权值不能为负数
dijkstra 算法 同样是贪心的思路,不断寻找距离 源点最近的没有访问过的节点。
这里我也给出 dijkstra三部曲:
- 第一步,选源点到哪个节点近且该节点未被访问过
- 第二步,该最近节点被标记访问过
- 第三步,更新非访问节点到源点的距离(即更新minDist数组)
模拟过程
0、初始化
minDist数组数值初始化为int最大值。
这里在强点一下 minDist数组的含义:记录所有节点到源点的最短路径,那么初始化的时候就应该初始为最大值,这样才能在后续出现最短路径的时候及时更新。
(图中,max 表示默认值,节点0 不做处理,统一从下标1 开始计算,这样下标和节点数值统一, 方便大家理解,避免搞混)
源点(节点1) 到自己的距离为0,所以 minDist[1] = 0
此时所有节点都没有被访问过,所以 visited数组都为0
以下为dijkstra 三部曲
1、选源点到哪个节点近且该节点未被访问过
源点距离源点最近,距离为0,且未被访问。
2、该最近节点被标记访问过
标记源点访问过
3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:
更新 minDist数组,即:源点(节点1) 到 节点2 和 节点3的距离。
- 源点到节点2的最短距离为1,小于原minDist[2]的数值max,更新minDist[2] = 1
- 源点到节点3的最短距离为4,小于原minDist[3]的数值max,更新minDist[3] = 4
和prim算法近似
import java.util.Arrays;
import java.util.Scanner;
public class Carlcode_dijkstra {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int[][] grid = new int[n + 1][n + 1];
for (int i = 0; i <= n; i++) {
Arrays.fill(grid[i], Integer.MAX_VALUE);
}
for (int i = 0; i < m; i++) {
int p1 = scanner.nextInt();
int p2 = scanner.nextInt();
int val = scanner.nextInt();
grid[p1][p2] = val;
}
int start = 1;
int end = n;
// 存储从源点到每个节点的最短距离
int[] minDist = new int[n + 1];
Arrays.fill(minDist, Integer.MAX_VALUE);
// 记录顶点是否被访问过
boolean[] visited = new boolean[n + 1];
minDist[start] = 0; // 起始点到自身的距离为0
for (int i = 1; i <= n; i++) { // 遍历所有节点
int minVal = Integer.MAX_VALUE;
int cur = 1;
// 1、选距离源点最近且未访问过的节点
for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}
visited[cur] = true; // 2、标记该节点已被访问
// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != Integer.MAX_VALUE && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}
}
if (minDist[end] == Integer.MAX_VALUE) {
System.out.println(-1); // 不能到达终点
} else {
System.out.println(minDist[end]); // 到达终点最短路径
}
}
}