当前位置: 首页 > article >正文

【现代深度学习技术】深度学习计算 | 参数管理

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、参数访问
      • (一)目标参数
      • (二)一次性访问所有参数
      • (三)从嵌套块收集参数
    • 二、参数初始化
      • (一)内置初始化
      • (二)自定义初始化
    • 三、参数绑定
    • 小结


  在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。

  之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

  我们首先看一下具有单隐藏层的多层感知机。

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述

一、参数访问

  我们从已有模型中访问参数。当通过Sequential类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中。如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())

在这里插入图片描述

  输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重和偏置。两者都存储为单精度浮点数(float32)。注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

(一)目标参数

  注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

在这里插入图片描述

  参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显式参数值的原因。除了值之外,我们还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None

在这里插入图片描述

(二)一次性访问所有参数

  当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

在这里插入图片描述

  这为我们提供了另一种访问网络参数的方式,如下所示。

net.state_dict()['2.bias'].data

在这里插入图片描述

(三)从嵌套块收集参数

  让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

在这里插入图片描述

  设计了网络后,我们看看它是如何工作的。

print(rgnet)

在这里插入图片描述

  因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

在这里插入图片描述

二、参数初始化

  知道了如何访问参数后,现在我们看看如何正确地初始化参数。我们在【深度学习基础】多层感知机 | 数值稳定性和模型初始化 中讨论了良好初始化的必要性。深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。

  默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init模块提供了多种预置初始化方法。

(一)内置初始化

  让我们首先调用内置的初始化器。下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述

  我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述

  我们还可以对某些块应用不同的初始化方法。例如,下面我们使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

在这里插入图片描述

(二)自定义初始化

  有时,深度学习框架没有提供我们需要的初始化方法。在下面的例子中,我们使用以下的分布为任意权重参数 w w w定义初始化方法:

w ∼ { U ( 5 , 10 )  可能性  1 4 0  可能性  1 2 U ( − 10 , − 5 )  可能性  1 4 (1) \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} \tag{1} w U(5,10)0U(10,5) 可能性 41 可能性 21 可能性 41(1)

  同样,我们实现了一个my_init函数来应用到net

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape) for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]

在这里插入图片描述

  注意,我们始终可以直接设置参数。

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

在这里插入图片描述

三、参数绑定

  有时我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(),
                    shared, nn.ReLU(), nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

在这里插入图片描述

  这个例子表明第三个和第五个神经网络层的参数是绑定的。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。这里有一个问题:当参数绑定时,梯度会发生什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

小结

  • 我们有几种方法可以访问、初始化和绑定模型参数。
  • 我们可以使用自定义初始化方法。

http://www.kler.cn/a/522951.html

相关文章:

  • DPO、KTO、DiffusionDPO
  • 穿心莲内酯(andrographolide)生物合成CYP72-文献精读106
  • Android View 的事件分发机制解析
  • Java Swing 基础组件详解 [论文投稿-第四届智能系统、通信与计算机网络]
  • RKNN_C++版本-YOLOV5
  • LiteFlow Spring boot使用方式
  • Flink (十三) :Table API 与 DataStream API 的转换 (一)
  • TypeScript 学习 -类型 - 9
  • MySQL知识点总结(十二)
  • 树和图的实现与应用:C语言实践详解
  • Docker/K8S
  • C语言中的do……while和while循环有什么区别?
  • MySQL事物,MVCC机制
  • 【搜索回溯算法篇】:多源BFS--从简单BFS到多点协同,探索搜索算法的进化
  • 挂载mount
  • 可扩展架构:如何打造一个善变的柔性系统?
  • LTV预估 | 多视角对比学习框架CMLTV
  • 四层网络模型
  • mybatis(112/134)
  • Windows 程序设计5:文件的删除、复制与重命名操作
  • JVM栈溢出线上环境排查
  • 基于Ubuntu交叉编译ZLMediaKit
  • PCB Editor层叠文件(Gerber文件输出-01)
  • 【自然语言处理(NLP)】机器翻译之数据处理(数据收集、数据清洗、数据分词、数据标注、数据划分)
  • 2025年美赛数学建模C题 奥运奖牌表的模型
  • 2025.1.21——八、[HarekazeCTF2019]Avatar Uploader 2(未完成) 代码审计|文件上传